II JJ Schuhmann Messtechnik

Table of Contents

Isolating Amplifier
Active, passive, universal, transducer, distributor

Feeding Isolating Amplifier, Analog Signal Conditioning
 Transmitter feeding devices, distributor, limit switches
 2

Measuring and Monitoring Relays, Limit Switches

Analog, digital with display, for input signals: current and voltage - DC und AC, thermocouples, PT 100, etc., Live-Zero Control, Electrode Relay

3

Digital Pulse and Frequency Processing
 Digital Analog Frequency Transducer, Digital Frequency Analog Transducer, Switching Amplifier with Impulse Summator, Frequency Divider, Switching Amplifier
 4

Measuring Values, Transmitting and Metering
 USB-Simulator, Simulator 90, Setpoint Adjuster

Analog Calculator
Addition, subtraction, linearization, multiplying, min- and maximum selector, calculator of the square root

AC Current Transducer, AC Voltage Transducer
 Isolating transducer for alternating current or alternating voltage
 7

Temperature and Resistance

Isolating transducer for NI 1000, PT 100, etc. in 2-, 3- or 4-wire technology, potentiometer, resistor, thermocouple, etc.

Additional Devices

Contact

『ת
 Schuhmann Messtechnik

Schuhmann GmbH \& Co. KG
Römerstraße 2
74363 Güglingen
Germany

Fon +49 71355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Title	Specification	PC- Inter- face	Available designs	Auxiliary power	Page
ISOLATING AMPLIFIER standard signals 0(4)... $20 \mathrm{~mA}, 0(2) \ldots 10 \mathrm{~V}$					
ST 1.00 SDC	standard signals I-U/I-U, calibrated switching/ Live-Zero input monitoring: transistor output		G6,2	20... 30 V DC	01-01
STP 1.00 SDC	free parameterizable, universal inputs and outputs	x	G6,2	20... 30 V DC	01-03
STP 1.00 MW	free parameterizable, universal inputs and outputs	X	G 12,5	24... 250 V DC, $90 \ldots 253 \mathrm{~V}$ AC	01-05
TF 19.00 GW	input I/ U, output I/ U, fixed calibrated, adjustable, simulation		G 22,5	24... 250 V DC, $90 \ldots . .253 \mathrm{~V} \mathrm{AC}$	01-07
$\begin{aligned} & \text { TF } 19.00 \mathrm{GW} \\ & 148 \end{aligned}$	Isolating amplifier with peak value measurement		G 22,5	24... 250 V DC, 90... 253 V AC	$\begin{array}{\|l\|} \hline 01- \\ 07-x x \end{array}$
UT 19.00 GW	input I/ U switchable, output I/ U simultaneous, trimmer		G 22,5	24... 250 V DC, $90 \ldots 253 \mathrm{~V} \mathrm{AC}$	01-09
UT 19.04 GW	special input, output I/ U simultaneous, trimmer		G 22,5	24... 250 V DC, $90 \ldots 253 \mathrm{~V} \mathrm{AC}$	01-11
MT 1.20 SDC	current input and output, 1:1		G 6,2	20... 30 V DC	01-13
TT 1.00 MW	1-channel, input I/ U, output I/ U, fixed calibrated, adjustable		G 12,5	24... 250 V DC, $90 \ldots . .253 \mathrm{~V} \mathrm{AC}$	01-15
TT 2.00 GW	2-channel, input I/ U, output I/ U, fixed calibrated, adjustable		G 22,5	24... 250 V DC, $90 \ldots 253 \mathrm{~V} \mathrm{AC}$	01-17
$\begin{aligned} & \text { TT } 2.00 \mathrm{GW} \\ & 315 \end{aligned}$	2-channel amplifier, input 1: $0 . .60 \mathrm{mV} / \mathrm{input}$ 2: $0 . .200 \mathrm{~V}$		G 22,5	24... 250 V DC, $90 \ldots . .253 \mathrm{~V} \mathrm{AC}$	$\begin{array}{\|l\|} \hline 01- \\ 17-x x \end{array}$
TT 4.00 GW	4-channel, input I/ U, output I/ U, fixed calibrated, adjustable		G 45	24... 250 V DC, $90 \ldots . .253 \mathrm{~V} \mathrm{AC}$	01-19

Isolating Amplifier

Title	Specification	PC- Inter- face	Available designs	Auxiliary power	Page
ANALOG DISTRIBUTOR distribution of universal analog I/ U input signals, 2 or 4 outputs 0 (4)... $20 \mathrm{~mA} / 0$ (2)... 10 V					
AV 2.00 SDC	2-channel output, parameterizable	X	G6,2	20... 30 V DC	01-21
TTV 2.00 GW	2-channel output I/ U / I/ U		G 22,5	24... 250 V DC, $90 \ldots . .253 \mathrm{VaC}$	01-23

ISOLATING AMPLIFIER - passive

Galvanic 2-way isolation, no auxiliary power required, $4 \ldots .20 \mathrm{~mA}$

MP 1.10 S	1-channel, 1:1 transmission, passive		G 6,2	no
MP 2.10 S	2-channel, 1:1 transmission, passive		G 6,2	no

ANALOG CALCULATOR

addition, subtraction, linearization, multiplying, min- and maximum selector, calculator of the square root

AS 3.00 SDC	3 inputs $\pm 20 \mathrm{~mA}, 1$ output I or U, addition, subtraction, linearization, parameterizable	X	G6,2	20...30 V DC	06-01
AS 3.00 MW	3 inputs $\pm 20 \mathrm{~mA}, 1$ output I or U, addition, subtraction, linearization, parameterizable	X	G 12,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	06-03
AS 3.10 SDC	3 inputs $\pm 10 \mathrm{~V}$, 1 output I or U, addition, subtraction, linearization, parameterizable	X	G 6,2	20...30 V DC	06-05
AS 3.10 MW	3 inputs $\pm 10 \mathrm{~V}$, 1 output I or U, addition, subtraction, linearization, parameterizable	X	G 12,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	06-07

* Designs: $\quad G=$ housing,
$\mathrm{T}=$ housing for door installation,
$E=$ eurocard

FEATURES
■ Input:
Current 0(4)... 20 mA or
Voltage 0... 10 V
- Output:
Current 0(4)... 20 mA or
Voltage 0... 10 V
- Calibrated inputs and outputs
for all ranges
- Transistor output for Live-Zero Monitor
■ Galvanic 3-way isolation of $3,75 \mathrm{kV}$
■ Low internal consumption

FUNCTION

Amplifiers are used for the isolation or conversion of analog signals. This guarantees a safe decoupling between the sensor and evaluation circuit and any influence of other sensor circuit among each other is absolutely impossible. Input and output of the ST1.00SDC are equipped with a current- or voltage range.

The range selection is being made by DIL-switch S1 and $S 2$ on the side, the desired adjustment can be chosen from the table on the side. The integrated Live-Zero Monitor is also able to control the input current ranges on error.

Connection diagram:

Please note:
adjustment
S1 and S2

Input:

I: Ioad-independent DC current: connection:	$\begin{aligned} & 0(4) \ldots 20 \mathrm{~mA} \\ & \text { terminal } 6-, 5+ \end{aligned}$	input resistance approx. 50Ω
U: load-independent DC voltage: connection:	$\begin{aligned} & 0(2) \ldots 10 \mathrm{~V} \\ & \text { terminal } 6-, 5+ \end{aligned}$	input resistance approx. $100 \mathrm{k} \Omega$

Output:

Adjustment:

Adjustment of range for input/ output/ Live-Zero with DIL-Switch S1 and S2 on the side:

\bullet				-	\bigcirc	4-20 mA	0-10V		\bullet
\bullet		-	\bullet		\bigcirc	4-20 mA	0-20 mA		
\bullet			-		\bigcirc	0-20 mA	0-10V	\bullet	\bullet
\bullet		\bullet			\bigcirc	0-20 mA	4-20 mA		
\bullet					\bigcirc	0(4)-20 mA	O(4)-20 mA		
	-	-	\bullet	\bullet		0-10V	0-10V	-	\bullet
	\bullet		\bullet	-		0-10V	4-20 mA		
	\bullet	\bullet		\bullet		0-10V	0-20 mA		
1	2	3	4	5		Input	Output	1	2
DIL - S2							DIL-S1		

$\bigcirc \wedge \quad$ Possible current input monitoring (Live-Zero Monitor) by switching output
$\square \triangleq \quad$ Switch position ON
$\square \wedge \quad$ Switch position OFF
Measuring range errors at change-over of the individual measuring ranges are typical 0,1 \%, max. 0,2 \%.

Display:

LED status:

> green, active green, flashing
input signal are in standard range, device ready for use input signal out of the acceptable range

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$ Operating temperature: $0 \ldots . .55^{\circ} \mathrm{C}$
Isolation voltage:

$$
3,75 \text { kV eff. } 1 \text { sec. input-output }
$$ $3,75 \mathrm{kV}$ eff. 1 sec . auxiliary voltage

Auxiliary power:

$24 \mathrm{~V} \mathrm{DC:}$	$20 \ldots 30 \mathrm{~V} \mathrm{DC}$ Influence of
auxiliary power:	$<0,1 \%$

Characteristics of transmission:

Transmission error:	<0,12 \%
Resolution:	15 bit
Linearity error:	<0,1 \%
Temperature error:	< $100 \mathrm{ppm} / \mathrm{K}$
Load influence I:	$<50 \mathrm{ppm}$ of final value
Load influence U:	$\begin{aligned} & <0,2 \% \\ & \text { at } 1 \mathrm{k} \Omega \text { load } \end{aligned}$
Setting time:	$<200 \mathrm{msec}$.

Directive:

EMC Directive:	$2014 / 30 / E U^{*}$
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to EN 50022-35 x 6,2 mm
Width: $\quad 6,2 \mathrm{~mm}$
Weight: $\quad 52 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL 94)
Approval: CE
Connection: screw clamps
0,14...2,5 mm²

For safety reasons we recommend to mount the housing for top hat rail with a distance $>1 \mathrm{~mm}$ to each other. Please check switch setting before initial operation!

Ordering information:	Type:	ST 1.00 SDC	$24 V D C$

FEATURES
■ Bipolar inputs:
Current $\pm 20 \mathrm{~mA}$
Voltage $\pm 250 \mathrm{mV}$
Voltage up to -20 V...+40 V
■ Output:
Current 0(4)... 20 mA or
Voltage 0(2)... 10 V
Parameterization without auxiliary power via PC-interface
■ Galvanic 3-way isolation of $2,5 \mathrm{kV}$
- Low internal consumption

FUNCTION

Amplifiers are used for the galvanic isolation or conversion of analog signals. This guarantees a safe decoupling between sensor and evaluation circuit and any influence of other sensor circuits among each other is absolutely impossible. The STP 1.00 SDC is equipped with bipolar current and voltage inputs as well as current and voltage outputs.

It can be adjusted and parameterized easily by the USB2 adapter in connection with KALIB-Software. Indication of status is signalized by front sided LED. The integrated protective switching with suppressor diode protects the secondary circuit from voltage peaks and transient excess voltage.

STP 1.00 SDC

Connection diagram:

[^0]| Input: | | |
| :---: | :---: | :---: |
| I: DC current (bipolar): connection: | $\begin{aligned} & -20 \ldots 0 \ldots+20 \mathrm{~mA} \\ & -10 \ldots 0 \ldots+10 \mathrm{~mA} \\ & \text { terminal } 8-, 7+ \\ & \hline \end{aligned}$ | input resistance approx. 10Ω |
| U: DC voltage (bipolar): connection: | $\begin{aligned} & -20 \ldots 0 \ldots+40 \mathrm{~V} \\ & -20 \ldots 0 \ldots+20 \mathrm{~V} \\ & -10 \ldots 0 \ldots+10 \mathrm{~V} \\ & -5 \ldots 0 \ldots+5 \mathrm{~V} \\ & \text { terminal } 8-, 6+ \end{aligned}$ | input resistance approx. $250 \mathrm{k} \Omega$ |
| U: DC voltage (bipolar): connection: | $\begin{aligned} & -250 \ldots 0 \ldots+250 \mathrm{mV} \\ & -500 \ldots 0 \ldots+500 \mathrm{mV} \\ & -500 \ldots 0 \ldots+1000 \mathrm{mV} \\ & -500 \ldots \ldots+2000 \mathrm{mV} \\ & \text { terminal } 8-, 5+ \end{aligned}$ | input resistance approx. $1 \mathrm{M} \Omega$ |
| Within the described measuring ranges the beginning respectively the end can be freely selected. | | |
| Output: | | |
| I: Ioad-independent DC current: connection: | 0(4)... 20 mA terminal $3-, 4+$ | permissible load max. 580Ω |
| U: load-independent DC voltage: connection: | $\begin{aligned} & 0(2) \ldots 10 \mathrm{~V} \\ & \text { terminal } 3-, 4+ \end{aligned}$ | permissible load $\geq 1 \mathrm{k} \Omega$ |

The minimum/ maximum limits for current and voltage output are freely selectable and adjustable in clear text. On exceeding or falling below the error limits at the input, a defined fixed value can be predetermined in case of error for the output.

Adjustment:

Measuring ranges and parameterization are adjustable in parameter data by KALIB-Software. You need a PC and the interface adapter USB2 with KALIB-Software.

Display:

| LED status: \quadgreen, active
 green, flashing | input signals are in standard range, device ready for use
 input out of predetermined limits or
 exceeding of measuring range |
| :--- | :--- | :--- |

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $\quad 0 . . .55^{\circ} \mathrm{C}$
Isolation voltage:
2,5 kV eff. 1 sec. input-output $2,5 \mathrm{kV}$ eff. 1 sec . auxiliary voltage

Auxiliary power:

24 V DC:	$\begin{aligned} & 20 \ldots 30 \mathrm{VDC} \\ & <1,5 \mathrm{~W} \end{aligned}$
Influence of	
auxiliary power:	< 0,1\%
Characteristics of	smission:
Transmission error:	<0,12 \%
Resolution:	15 bit
Linearity error:	<0,1 \%
Temperature error:	< $100 \mathrm{ppm} / \mathrm{K}$
Load influence I:	$<50 \mathrm{ppm}$ of final value
Load influence U:	<0,2\%
	at $1 \mathrm{k} \Omega$ load
Setting time:	$<500 \mathrm{msec}$.

Directive:

EMC Directive:	$2014 / 30 / E U^{*}$
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to EN 50022-35 x 6,2 mm
Width: $\quad 6,2 \mathrm{~mm}$
Weight: $\quad 52 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL 94)
Approval: CE
Connection: screw clamps
$0,14 \ldots 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a distance $>1 \mathrm{~mm}$ to each other. Please check parameterization before initial operation!

Ordering information:	Type: Accessories:	STP 1.00 SDC 24 VDC USB2/ USB-Simulator with KALIB-Software

FEATURES

■ Bipolar inputs:
Current $\pm 20 \mathrm{~mA}$
Voltage $\pm 250 \mathrm{mV}$
Voltage up to -20 V... +40 V
■ Output:
Current 0(4)... 20 mA or
Voltage 0(2)... 10 V

- Parameterization without auxiliary power via PC-interface
■ Wide range auxiliary power 24... 250 V DC/ 90... 253 V AC

■ Galvanic 3-way isolation of $2,5 \mathrm{kV}$

FUNCTION

Amplifiers are used for the galvanic isolation or conversion of analog signals. This guarantees a safe decoupling between sensor and evaluation circuit and any influence of other sensor circuits among each other is absolutely impossible. The STP 1.00 MW is equipped with bipolar current and voltage inputs as well as current and voltage outputs.

It can be adjusted and parameterized easily by the USB2 adapter in connection with KALIB-Software. Indication of status is signalized by front sided LED. The integrated protective switching with suppressor diode protects the secondary circuit from voltage peaks and transient excess voltage.

STP 1.00 MW

Connection diagram:

[^1]| Input: | | |
| :---: | :---: | :---: |
| I: DC current (bipolar): connection | $\begin{aligned} & -20 \ldots 0 \ldots+20 \mathrm{~mA} \\ & -10 \ldots+10 \mathrm{~mA} \\ & \text { terminal } 8-, 7+ \end{aligned}$ | input resistance approx. 10Ω |
| U: DC voltage (bipolar): connection: | $\begin{aligned} & -20 \ldots 0 \ldots+40 \mathrm{~V} \\ & -20 \ldots 0 \ldots+20 \mathrm{~V} \\ & -10 \ldots 0 \ldots+10 \mathrm{~V} \\ & -5 \ldots . \ldots+5 \mathrm{~V} \\ & \text { terminal } 8-, 6+ \end{aligned}$ | input resistance approx. $250 \mathrm{k} \Omega$ |
| U: DC voltage (bipolar): connection: | $\begin{aligned} & -250 \ldots 0 \ldots+250 \mathrm{mV} \\ & -500 \ldots 0 \ldots+500 \mathrm{mV} \\ & -500 \ldots 0 \ldots+1000 \mathrm{mV} \\ & -500 \ldots 0 \ldots+2000 \mathrm{mV} \end{aligned}$ $\text { terminal } 8-, 5+$ | input resistance approx. $1 \mathrm{M} \Omega$ |

Output:

I: Ioad-independent DC current:	$0(4) \ldots 20 \mathrm{~mA}$	permissible load max. 580Ω
connection:	terminal $3-, 4+$	
U: load-independent DC voltage: connection:	$0(2) \ldots 10 \mathrm{~V}$ terminal $3-, 4+$	permissible load $\geq 1 \mathrm{k} \Omega$

The minimum/ maximum limits for current and voltage output are freely selectable and adjustable in clear text. On exceeding or falling below the error limits at the input, a defined fixed value can be predetermined in case of error for the output.

Adjustment:

Measuring ranges and parameterization are adjustable in parameter data by KALIB-Software. You need a PC and the interface adapter USB2 with KALIB-Software.

Display:

LED status:	green, active green, flashing	input signals are in standard range, device ready for use input out of predetermined limits or exceeding of measuring range

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$ Operating temperature: $0 . . .55^{\circ} \mathrm{C}$
Isolation voltage:

> 2,5 kV eff. 1 sec . input-output 2,5 kV eff. 1 sec . auxiliary voltage

Auxiliary power:

Widerange:	$24 \ldots 250 \mathrm{~V} \mathrm{DC}$ $<0 . .253 \mathrm{~V} \mathrm{AC}$
Influence of auxiliary power:	$<0,1 \%$

Characteristics of transmission:	
Transmission error:	<0,12\%
Resolution:	15 bit
Linearity error:	< 0,1 \%
Temperature error:	< $100 \mathrm{ppm} / \mathrm{K}$
Load influence I:	$\begin{aligned} & <50 \mathrm{ppm} \\ & \text { of final value } \end{aligned}$
Load influence U:	$\begin{aligned} & <0,2 \% \\ & \text { at } 1 \mathrm{k} \Omega \text { load } \end{aligned}$
Setting time:	$<500 \mathrm{msec}$.

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 40 housing IP 20 clamps
Mounting rail fixed according to
EN 50022-35 x 6,2 mm
Width: $\quad 12,5 \mathrm{~mm}$
Weight: $\quad 108 \mathrm{~g}$
Material: \quad Polyamide PA
Flammability class: Vo (UL 94)
Approval: CE
Connection: plugg. screw clamps
$0,14 \ldots, 5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a distance $>1 \mathrm{~mm}$ to each other. Please check parameterization before initial operation!

Ordering information:	Type: Accessories:	STP 1.00 MW USB2/ USB-Simulator with KALIB-Software

FEATURES

■ Switchable inputs: Current 0(4)... 20 mA or
Voltage 0(2)... 10 V

- Outputs simultaneous: Voltage $0(2) . . .10 \mathrm{~V}$ and Current 0(4)... 20 mA active or loop-powered

■ Function, switchable:

- fixed calibration or
- adjustable by trimmer or
- simulation mode for outputs

■ Galvanic 3-way isolation of $2,5 \mathrm{kV}$
Low internal consumption

FUNCTION

Amplifiers are used for the galvanic isolation or conversion of analog signals. This guarantees a safe decoupling between sensor and evaluation circuit and any influence of other sensor circuit among each other is absolutely impossible. This Amplifier is equipped with standard current and voltage inputs as well as current and voltage outputs.

The TF 19.00 GW can be switched to different characteristics of transmission by front side turnswitch. Fixed calibrated measuring ranges for input and output are stored in switch setting $0 . . .7$. In position 8...D the transmission ranges can be adjusted by zero point and range trimmer. Position E and F are used for simulation during initial operation, here a fixed output value can be generated by zero point and range trimmer, without input signal.

Connection diagram:

[^2]Input:

I: DC current: connection:	0(4)... 20 mA terminal $4-, 5+$	input resistance approx. 10Ω
U: DC voltage: connection:	0 (2) ... 10 V terminal 4-, $6+$	input resistance approx. $500 \mathrm{k} \Omega$
Output:		
I: Ioad-independent DC current: connection: or: loop-powered DC current: connection:	0(4)... 20 mA terminal 10 -, $11+$ $0(4) . . .20 \mathrm{~mA}$ terminal $9-12+$	permissible load max. 500Ω max. permissible voltage 30 V
U: load-independent DC voltage: connection:	$\begin{aligned} & 0(2) \ldots 10 \mathrm{~V} \\ & \text { terminal } 7-, 8+ \end{aligned}$	permissible load $\geq 2 \mathrm{k} \Omega$

The maximum limits for current- and voltage output are fixed at 22 mA respectively 11 V .

Adjustment:

The characteristics of transmission are adjustable by front side turn-switch.

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$ Operating temperature: $0 . . .55^{\circ} \mathrm{C}$
Isolation voltage:
2,5 kV eff. 1 sec. input-output $2,5 \mathrm{kV}$ eff. 1 sec . auxiliary voltage

Auxiliary power:

Wide range:	$24 \ldots .250 \mathrm{~V} \mathrm{DC}$ $0 . .253 \mathrm{~V} \mathrm{AC}$ Influence of auxiliary power:$\quad<0 \mathrm{~W}$

Characteristics of transmission:

Transmission error: $<0,12 \%$

Resolution:
Linearity error:
Temperature error:
Load influence I:
Load influence U:
Setting time:
15 bit
$<0,1 \%$
$<100 \mathrm{ppm} / \mathrm{K}$
< 50 ppm
of final value
$<0,2 \%$ at $2 \mathrm{k} \Omega$ load
<100 msec.

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20 housing

$$
\text { IP } 20 \text { clamps }
$$

Rail-mounting fixed according to
EN 50022-35 x 7, 5 mm
Width: $\quad 22,5 \mathrm{~mm}$
Weight: $\quad 140 \mathrm{~g}$
Material: \quad Polyamide PA
Flammability class: Vo (UL94)
Approval: CE
Connection: screw clamps $\leq 2,5 \mathrm{~mm}^{2}$

Please check switch position before initial operation!

Ordering information:	Type:	TF 19.00 GW

FEATURES

- Peak value measurement: $f=6 \mathrm{~Hz}$ (half sinus)
Current 0(4)... 20 mA or
Voltage 0(2)... 10 V
■ Outputs simultaneous: Voltage 0(2)... 10 V and Current 0(4)... 20 mA active or loop-powered

■ Function, switchable:

- fixed calibration or
- adjustable by trimmer or
- simulation mode for outputs
- Galvanic 3-way isolation of $2,5 \mathrm{kV}$

FUNCTION

The TF 19.00 GW 148 does the peak value measurement: $f=6 \mathrm{~Hz}$ (half sinus).
Amplifiers are used for the galvanic isolation or conversion of analog signals. This guarantees a safe decoupling between sensor and evaluation circuit and any influence of other sensor circuit among each other is absolutely impossible. This Amplifier is equipped with standard current and voltage inputs as well as current and voltage outputs.

The TF 19.00 GW 148 can be switched to different characteristics of transmission by front side turnswitch. Fixed calibrated measuring ranges for input and output are stored in switch setting $0 . . .7$. In position 8...D the transmission ranges can be adjusted by zero point and range trimmer. Position E and F are used for simulation during initial operation, here a fixed output value can be generated by zero point and range trimmer, without input signal.

TF 19.00 GW 148

Connection diagram:

[^3]| Input: | | |
| :---: | :---: | :---: |
| I: DC current: connection: | 0(4)... 20 mA terminal 4-, $5+$ | input resistance approx. 10Ω |
| U: DC voltage: connection: | $\begin{aligned} & 0(2) . . .10 \mathrm{~V} \\ & \text { terminal } 4-, 6+ \end{aligned}$ | input resistance approx. $500 \mathrm{k} \Omega$ |
| Output: | | |
| I: Ioad-independent DC current: connection: or: | $0(4) \ldots 20 \mathrm{~mA}$ terminal 10 -, $11+$ | permissible load max. 500Ω |
| loop-powered DC current: connection: | $0(4) . . .20 \mathrm{~mA}$ terminal $9-, 12+$ | max. permissible voltage 30 V |
| U: load-independent DC voltage: connection: | 0 (2)... 10 V terminal $7-, 8+$ | permissible load $\geq 2 \mathrm{k} \Omega$ |

The maximum limits for current- and voltage output are fixed at 22 mA respectively 11 V .

Adjustment:

The characteristics of transmission are adjustable by front side turn-switch.

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $\quad 0 . . .55^{\circ} \mathrm{C}$
Isolation voltage:
2,5 kV eff. 1 sec. input-output $2,5 \mathrm{kV}$ eff. 1 sec . auxiliary voltage

Auxiliary power:

Wide range:	$24 \ldots . .250 \mathrm{~V} \mathrm{DC}$
	$90 \ldots .253 \mathrm{~V} \mathrm{AC}$
	$<3 \mathrm{~W}$

Influence of auxiliary power: $<0,1$
\%

Characteristics of transmission:

Transmission error:	$<0,12 \%$
Resolution:	15 bit
Linearity error:	$<0,1 \%$
Temperature error:	$<100 \mathrm{ppm} / \mathrm{K}$
Load influence I:	$<50 \mathrm{ppm}$
	of final value Load influence U:
Setting time:	$<0,2 \%$ at $2 \mathrm{k} \Omega$ load
	$<100 \mathrm{msec}$.

Directive:

EMC Directive: \quad 2014/30/EU*
Low Voltage Directive: 2014/35/EU
*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20 housing IP 20 clamps
Rail-mounting fixed according to
EN 50022-35 x 7, 5 mm
Width: $\quad 22,5 \mathrm{~mm}$
Weight: $\quad 140 \mathrm{~g}$
Material: Polyamide PA
Flammability class: Vo (UL94)
Approval: CE
Connection: screw clamps
$\leq 2,5 \mathrm{~mm}^{2}$

Please check switch position before initial operation!

Ordering information:
Type: TF 19.00 GW 148

FEATURES

■ Input, switchable:
Current 0(4)... $20 \mathrm{~mA}, \pm 10 \mathrm{~mA}$ or
Voltage 0(2)... $10 \mathrm{~V}, \pm 10 \mathrm{~V}$

- Output, simultaneous: Current 0(4)... 20 mA and
Voltage 0(2)... 10 V
- Fine adjustment of offset and gain by trimmer
Galvanic 3-way isolation of 4 kV

The desired input range can be chosen from the table on the side, the adjustment is carried out by front sited turn switch. The output ranges are switchable. The integrated protective switching with suppressor diode protects the secondary circuit from peaks and transient excess voltage.

FUNCTION

Isolating amplifiers are mainly used for the galvanic isolation or conversion of analog signals. This guarantees a safe decoupling between sensor and evaluation circuit and any influence of sensor circuits among each other is absolutely impossible. The UT 19.00 GW has one input for current or voltage and one output which can do current and voltage simultaneous. Fine adjustment of offset and gain is being made by trimmer.

UT 19.00 GW

Connection diagram:

[^4]
Input:

I: DC current:	$0(4) \ldots 20 \mathrm{~mA}$ connection:	terminal $4-, 5+$

Input ranges selection by front side turn-switch:

Position	Input U	Input I
0	$0 \ldots .20 \mathrm{~V}$	$0 \ldots 20 \mathrm{~mA}$
1^{*}	$0 \ldots .10 \mathrm{~V}$	$0 \ldots 20 \mathrm{~mA}$
2	$0 \ldots .1 \mathrm{~V}$	$0 \ldots 20 \mathrm{~mA}$
4	-	$4 \ldots 2 \mathrm{~mA}$
8	$-10 \ldots 0 \ldots+10 \mathrm{~V}$	$-10 \ldots 0 \ldots+10 \mathrm{~mA}$
9	$-5 \ldots 0 \ldots+5 \mathrm{~V}$	$-10 \ldots 0 . .+10 \mathrm{~mA}$
A	$-500 \ldots 0 \ldots+500 \mathrm{mV}$	$-10 \ldots 0 \ldots+10 \mathrm{~mA}$

Measuring range errors at change-over of the individual measuring ranges $\leq 0,5 \%$.

Output:

I: Ioad-independent DC current: connection:	$0(4) \ldots 20 \mathrm{~mA}$ terminal $10-, 11+$	permissible load max. 600Ω
U: load-independent DC voltage:	$0(2) \ldots 10 \mathrm{~V}$	perm. load $\geq 5 \mathrm{k} \Omega$ simult. operation perm. load $\geq 1 \mathrm{k} \Omega$ exclusive
Gain adjustment:	trimmer $\pm 5 \%$	
Offset adjustment connection:	trimmer $\pm 7 \%$	

Output ranges switchable by connection of terminal $9+12$ (Dead-/ Live-Zero):

Terminal 9/ 12	Output U	Output I
Open*	$0 \ldots .10 \mathrm{~V}$	$0 \ldots 20 \mathrm{~mA}$
Closed	$2 \ldots .10 \mathrm{~V}$	$4 \ldots 20 \mathrm{~mA}$

* Factory setting: transmission 1:1; with Live-Zero transmission.

Position	Input I	Output I	Clamp 9/ 12	Remark
1^{*}	$0 \ldots 20 \mathrm{~mA}$	$0 \ldots 20 \mathrm{~mA}$	Open *	transmission 1:1 with
1^{*}	$4 \ldots 20 \mathrm{~mA}$	$4 \ldots 20 \mathrm{~mA}$	Open *	
1	$0 \ldots 20 \mathrm{~mA}$	$4 \ldots 20 \mathrm{~mA}$	Closed	basic offset at output 4 mA

Display:
LED power green, active device active

Environmental conditions:

$\begin{array}{ll}\text { Storage temperature: } & -40 \ldots+70^{\circ} \mathrm{C} \\ \text { Operating temperature: } & 0 \ldots . .55^{\circ} \mathrm{C} \\ \text { Isolation voltage: } & 4 \mathrm{kV} \text { eff. } 1 \mathrm{sec} .\end{array}$ input-output-auxiliary power

Auxiliary power:

Wide range:	$24 \ldots 250 \mathrm{~V} \mathrm{DC}$
	$90 \ldots 253 \mathrm{~V} \mathrm{AC}$
	$<3 \mathrm{~W}$
Influence of	
auxiliary power:	$<0,1 \%$

Characteristics of transmission:

Transmission error:	< 0,12 \%
Linearity error:	< 0,15 \%
Temperature error:	< $100 \mathrm{ppm} / \mathrm{K}$
Load influence I:	$<50 \mathrm{ppm}$ of final value
Load influence U:	$<0,5 \%$ at $1 \mathrm{k} \Omega$ load
Setting time:	$<200 \mathrm{msec}$.

Directive:

EMC Directive:
2014/30/EU*
Low Voltage Directive: 2014/35/EU
*minimum deviations possible during
HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20 housing IP 20 clamps
Rail-mounting fixed according to
EN 50022-35 x 7,5 mm
Width: $\quad 22,5 \mathrm{~mm}$
Weight: $\quad 140 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval:
Connection: screw clamps
$\leq 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check switch position before initial operation!

Ordering information:

Type: UT 19.00 GW
wide range

FEATURES

■ Input:

Current up to 5 A DC or
Voltage up to 1000 V DC
according to customer specification
■ Output, simultaneous: Current 0(4)... 20 mA and
Voltage 0(2)... 10 V

- Fine adjustment of offset and gain by trimmer

■ Galvanic 3-way isolation of 4 kV

FUNCTION

Isolating amplifiers are mainly used for the galvanic isolation or conversion of analog signals. This guarantees a safe decoupling between sensor and evaluation circuit and any influence of sensor circuits among each other is absolutely impossible. The UT 19.04 GW has one input for current or voltage and one output which can do current and voltage simultaneous. Fine adjustment of offset and gain is being made by trimmer.

The desired input ranges must be specified by customer. The output ranges are switchable. An integrated protective switching with suppressor diode protects the secondary circuit from peaks and transient excess voltage.

UT 19.04 GW

Connection diagram:

Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:

I: DC current:	up to 5A DC
connection:	terminal $4-, 5+$
U: DC voltage:	up to 1000 V DC
connection:	terminal $4-, 6+$

Customer specification and calibration of the input, e.g.

input:	$0 \ldots 100 \mathrm{mV}$ DC
or input:	$0 \ldots . \ldots 200 \mathrm{VDC}$
or input:	$10 \ldots 20 \mathrm{~mA} \mathrm{DC}$
or input:	$0 \ldots 250 \mathrm{~mA} \mathrm{DC}$

Output:

I: Ioad-independent DC current: connection:	$0(4) \ldots 20 \mathrm{~mA}$ terminal $10-, 11+$	permissible load max. 600Ω
U: load-independent DC voltage:	$0(2) \ldots 10 \mathrm{~V}$	perm. load $\geq 5 \mathrm{k} \Omega$ simult. operation perm. load $\geq 1 \mathrm{k} \Omega$ exclusive
Gain adjustment: trimmer $\pm 5 \%$		
Offset adjustment connection:	trimmer $\pm 7 \%$	
	terminal $7-, 8+$	

Output ranges switchable by connection of terminal $9+12$ (Dead-/ Live-Zero):

Terminal 9/ 12	Output voltage	Output current
Open *	$0 \ldots .10 \mathrm{~V}$	$0 \ldots .20 \mathrm{~mA}$
Closed	$2 \ldots .10 \mathrm{~V}$	$4 \ldots 20 \mathrm{~mA}$

* factory setting

Display:

LED power green, active device active

Environmental conditions:

Storage temperature:	$-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature:	$0 \ldots . .55^{\circ} \mathrm{C}$
Isolation voltage:	4 kV eff. 1 sec.

Auxiliary power:

Wide range:	$24 . .250 \mathrm{~V} \mathrm{DC}$ $90 . .253 \mathrm{~V} \mathrm{AC}$ Influence of auxiliary power:$\quad<0,1 \%$

Characteristics of transmission:

Transmission error:	$<0,12 \%$
Linearity error:	$<0,15 \%$
Temperature error:	$<100 \mathrm{ppm} / \mathrm{K}$
Load influence I:	$<50 \mathrm{ppm}$
Load influence U:	
of final value	
Setting time:	$<0,5 \%$ at $1 \mathrm{k} \Omega$ load
	$<200 \mathrm{msec}$.

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive: 2014/35/EU	
*minimum deviations possible during	
HF-radiation influence	

Mounting details:

Housing for top hat rail	
Type of protection:	IP 20 housing
	IP 20 clamps

Rail-mounting fixed according to
EN 50022-35 x 7,5 mm
Width: $\quad 22,5 \mathrm{~mm}$
Weight: $\quad 140 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval: CE
Connection: screw clamps
$\leq 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check switch position before initial operation!

Ordering information:	Type: UT 19.04 GW	widerange

FEATURES

- Input:
current 0(4)... 20 mA
■ Output: current 0(4)... 20 mA

■ Galvanic 3-way isolation of 500 V

■ Low internal consumption

FUNCTION

The MT 1.20 SDC is used for the exact potential isolation of different measuring signals. The galvanic 3 -way isolation protects agains mismeasurment or damage of the following instruments, such as analog control devices, control rooms, guidiance systems, PLC units. The transmission of input and output is 1:1. It is possible to transmit Live-Zero.

The integrated protective switching with suppressor diode protects the secondary circuit from voltage peaks and transient excess voltage.

Connection diagram:

[^5]Input:
I: load-independent DC current: 0 (4)... $20 \mathrm{~mA} \quad$ input resistance approx. 20Ω
connection:
terminal 6-, $5+$

Type	Input I	loop- powered	Output I	Remark
MT 1.20 SDC	$0 . .20 \mathrm{~mA}$	no	$0 \ldots 20 \mathrm{~mA}$	transmission 1:1
MT 1.20 SDC	$4 . . .20 \mathrm{~mA}$	no	$4 . . .20 \mathrm{~mA}$	with Live-Zero transmission

Output:

I: Ioad-independent DC current: connection:	$0(4) \ldots 20 \mathrm{~mA}$ terminal $3-, 4+$	permissible load max. 400Ω
Display:		
LED status: green, active	device ready for use	

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $0 \ldots . .55^{\circ} \mathrm{C}$
Isolation voltage:
500 V eff. 2 sec. inp./ auxiliary power 500 V eff. 2 sec. outp./ auxiliary power 500 V eff. 2 sec. output/ input

Auxiliary power:

24 V DC:

Influence of auxiliary power:
20... 30 V DC

$$
<1,5 \mathrm{~W}
$$

Characteristics of transmission:

Transmission error: $<0,12$ \%
Linearity error:
Temperature error: $<100 \mathrm{ppm} / \mathrm{K}$
Load influence I:
< 0,4 \% of final value
Setting time: $<50 \mathrm{msec}$.

Directive:

EMC Directive:	$2014 / 30 / E U^{*}$
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to
EN 50022-35 x 6,2 mm
Width: $\quad 6,2 \mathrm{~mm}$
Weight: $\quad 52 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL 94)
Approval:
Connection:
CE
screw clamps
$0,14 \ldots 2,5 \mathrm{~mm}^{2}$

For safety reasons we recommend to mount the housing for top hat rail with a distance $>1 \mathrm{~mm}$ to each other.

Ordering information:

Type: MT 1.20 SDC $24 V D C$

FEATURES

■ Input:
Current 0(4)... 20 mA or
Voltage 0(2)... 10 V

- Output, simultaneous: Current 0(4)... 20 mA (active or passive) and voltage 0(2)... 10 V
■ Function, switchable:
- fixed calibration or
- adjustable by trimmer
- Pluggable screw-clamps

■ Galvanic 3-way isolation

FUNCTION

The TT 1.00 MW is used for the precise potential isoIation of different measuring signals. The unit has 4 DIP-switches on frontside.
To select the transmission or the signal conversion ranges, use the DIP-switches 1-3.
Fixed calibrated standard measurement ranges, for input and output, are stored in the device: $0(4) \ldots 20 \mathrm{~mA} / 0(2) \ldots 10 \mathrm{~V}=$ DIP-switch 4 OFF.
The fine adjustment of the offset and the final value is carried out by trimmer $=$ DIP-switch 40 N .

Its output can do current (active or passive) and voltage simultaneous.
The galvanic 3-way isolation is used to protect against faulty measurement or damage downstream equipment such as analog control units, control rooms, control systems, PLC units.
The integrated protection circuit with suppressor diode protects the secondary circuit from voltage spikes and transient surges.

Connection diagram:

+1 [mA] passive
GND

DC voltage

Schuhmann GmbH \& Co. KG
 Römerstraße 2
 D-74363 Güglingen
 Tel. +4971355056
 E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:		
I: DC current:	$0(4) \ldots 20 \mathrm{~mA}$	input resistance approx. 10Ω
conection:	terminal $5-, 6+$	
$\mathrm{U}: \mathrm{DC}$ voltage: connection:	$0(2) \ldots 1 \mathrm{~V}$	input resistance approx. $500 \mathrm{k} \Omega$
	terminal $5-, 4+$	

Output:

I: load-independent DC current:	0(4)...20 mA	permissible load max. 540Ω
Output current limiting: connection:	$\begin{aligned} & 22,0 \mathrm{~mA} \\ & \text { terminal } 9-, 10+ \end{aligned}$	
or: loop-powered DC current: connection:	0(4)... 20 mA terminal $11-, 12+$	max. permissible voltage 30 V
tion: do not use output	(load-independent)	passive (loop pow.) at the same tim
U: load-independent DC voltage:	0 (2)... 10 V	permis. load $\geq 5 \mathrm{k} \Omega$ simultaneous permis. load $\geq 1 \mathrm{k} \mathrm{\Omega}$ exclusive
connection:	terminal $7-, 8+$	
Gain adjustment:	trimmer ± 25 \%	(DIP-switch $4=0 \mathrm{~N}$)
Offset adjustment:	trimmer ± 25 \%	(DIP-switch $4=0 \mathrm{~N}$)

Adjustment:

DIP-switch for range selection:

1	Switch	Function	ON	OFF
-2	1	input	U [V]	1 [mA]
$\begin{array}{r} 3 \\ -4 \end{array}$	2*	input	4... $20 \mathrm{~mA} / 2 \ldots 10 \mathrm{~V}$	$0 \ldots .20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$
on off	3*	output	$4 . . .20 \mathrm{~mA} / 2 \ldots . .10 \mathrm{~V}$	$0 . .20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$
	4	calibration	adjustment with trimmer	fixed calibrated*

*unchangeable factory setting: DIP4 $=0$ FF (trimmers are inactive)
Display:

LED status	green, active green, flashing	input signals are in standard range, device ready for use input signals are not in standard range

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$ Operating temperature: $-40 \ldots+55^{\circ} \mathrm{C}$ Isolation voltage: 2,5 kV eff. 1 sec . input/ output 4 kV eff. 1 sec . auxiliary power

Auxiliary power:

Wide range: Influence of aux. power:	$\begin{aligned} & 24 \ldots . .250 \mathrm{~V} \text { DC } \\ & 90 \ldots 253 \mathrm{~V} \mathrm{AC} \\ & <3 \mathrm{~W} \\ & <0,1 \% \end{aligned}$
Characteristics of transmission:	
Transmission error:	<0,12 \%
Linearity error:	<0,1 \%
Temperature error:	< $100 \mathrm{ppm} / \mathrm{K}$
Load influence :	$<50 \mathrm{ppm}$ offinal value
Load influence U:	<0,2 \%
	at $1 \mathrm{k} \Omega$ load
Setting time:	$<30 \mathrm{msec}$.

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during
HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 30 housing IP 20 clamps
Rail-mounting fixed according to
EN 50022-35 x 7, 5 mm
Width: $\quad 12,5 \mathrm{~mm}$
Weight: $\quad 90 \mathrm{~g}$
Material: Polyamide (PA)
Flammability class: Vo (UL94)
Approval: CE
Connection: pluggable screw clamps $0,2 \ldots 2,5 \mathrm{~mm}^{2}$

For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check DIP-switch before initial operation!

Ordering information:
 Type: TT 1.00 MW
 wide range

FEATURES

■ Inputs:

$2 x$ current 0(4)... 20 mA or
$2 x$ voltage 0(2)... 10 V

- Outputs simultaneous: $2 x$ current 0(4)... 20 mA and
$2 x$ voltage 0(2)... 10 V
- Function, switchable:
- fixed calibration or
- adjustable by trimmer
- Pluggable screw-clamps

■ Galvanic 3-way isolation per channel

FUNCTION

The 2-channel TT 2.00 GW is used for the precise potential isolation of different measuring signals. The unit has 4 DIP-switches on frontside.
To select the transmission or the signal conversion ranges, use the DIP-switches 1-3.
Fixed calibrated standard measurement ranges, for input and output, are stored in the device: 0(4)... 20 $\mathrm{mA} / 0(2) \ldots 10 \mathrm{~V}=$ DIP-switch 4 OFF.
Each output channel can alternatively be adjusted separately and the individual range can be set.
The fine adjustment of the offset and the final value is carried out by trimmer $=$ DIP-switch 40 N .

The galvanic 3-way isolation is used to protect against faulty measurement or damage downstream equipment such as analog control units, control rooms, control systems, PLC units.
The integrated protection circuit with suppressor diode protects the secondary circuit from voltage spikes and transient surges.

Connection diagram:

[^6]
Input:

I: $D C$ current:	$0(4) \ldots 20 \mathrm{~mA} \quad$ input resistance approx. 50Ω		
connection:	see connection diagram	\quad	input resistance approx. $500 \mathrm{k} \Omega$
:---			
U: DC voltage:			
connection:			

Output:

I: load-independent $D C$ current: Output current limiting: connection:	$\begin{aligned} & 0(4) \ldots .20 \mathrm{~mA} \\ & 22,0 \mathrm{~mA} \\ & \text { see connection diagram } \end{aligned}$	permissible load max. 540Ω
U: load-independent DC voltage:	0 (2)...10 V	permissible load $\geq 5 \mathrm{k} \Omega$ simultan. permissible load $\geq 1 \mathrm{k} \Omega$ exclusive
Gain adjustment: Offset adjustment:	$\begin{aligned} & \text { trimmer } \pm 25 \% \\ & \text { trimmer } \pm 25 \% \end{aligned}$	(DIP-switch $4=0 \mathrm{~N}$) (DIP-switch $4=0 \mathrm{~N}$)
connection:	see connection diagram	

Adjustment:

DIP-switch for range selection:

1	Switch	Function	ON	OFF
2	1	input	U [V]	1 [mA]
4	2*	input	4... $20 \mathrm{~mA} / 2 \ldots . .10 \mathrm{~V}$	$0 . . .20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$
on off	3*	output	4... $20 \mathrm{~mA} / 2 . .10 \mathrm{~V}$	0... $20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$
	4	calibration	adjustment with trimmer	fixed calibrated*

*unchangeable factory setting: DIP4=0FF (trimmers are inactive)
Display:

LED status	green, active green, flashing	input signals are in standard range, device ready for use input signals are not in standard range

Environmental conditions:

Storage temperature:	$-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature:	$-40 \ldots 55^{\circ} \mathrm{C}$
Isolation voltage:	
$2,5 \mathrm{kV}$ eff. 1 sec.	input/ output
4 kV eff. 1 sec.	auxiliary power
$500 \mathrm{~V} \mathrm{eff} 1 sec.$.	channel/ channel

Auxiliary power:

Wide range:	$24 \ldots . \ldots 250 \mathrm{VDC}$ $90 \ldots 253 \mathrm{~V} \mathrm{AC}$
	$<3 \mathrm{~W}$
Influence of aux. power:	$<0,1 \%$

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	2014/35/EU
*minimum deviations possible during	
HF-radiation influence	

Mounting details:

Housing for top hat rail
Type of protection: IP 40 housing
IP 20 clamps
Rail-mounting fixed according to
EN 50022-35×7.5 mm
Width: $\quad 22,5 \mathrm{~mm}$
Weight: $\quad 160 \mathrm{~g}$
Material: Polyamide PA
Flammability class: Vo (UL94)
Approval: CE
Connection: pluggable
screw clamps
$0,2 \ldots 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.
Please check DIP-switch before initial operation!

Ordering information:
Type: TT 2.00 GW
wide range

FEATURES

■ Inputs:

$2 x$ voltage
E1: 0... $60 \mathrm{mV} / \mathrm{E2:} \mathrm{0..}$.

- Outputs simultaneous: $2 x$ current 0(4)... 20 mA and
$2 x$ voltage 0(2)... 10 V
- Function, switchable:
- fixed calibration or
- adjustable by trimmer
- Pluggable screw-clamps

■ Galvanic 3-way isolation per channel

FUNCTION

The 2-channel TT 2.00 GW 315 is used for the precise potential isolation of two different measuring signals. Channel 1 processes signals from $0 . . .60 \mathrm{mV}$, channel 2 from $0 . . .200 \mathrm{~V}$. The unit has 4 DIP-switches on frontside.
DIP-switch 1 must be ON, DIP-switch 2 must be OFF. DIP-switch 3 determines the output signal.
Fixed calibrated standard measurement ranges, for input and output, are stored in the device: 0(4)... 20 $\mathrm{mA} / 0(2) \ldots 10 \mathrm{~V}=$ DIP-switch 40 FF.
Each output channel can alternatively be adjusted separately and the individual range can be set.
The fine adjustment of the offset and the final value is carried out by trimmer $=$ DIP-switch 40 N .

The galvanic 3-way isolation is used to protect against faulty measurement or damage downstream equipment such as analog control units, control rooms, control systems, PLC units.
The integrated protection circuit with suppressor diode protects the secondary circuit from voltage spikes and transient surges.

Connection diagram:

[^7]
Input:

$\mathrm{U}:$ DC voltage:	$\mathrm{U} 1: 0 \ldots 60 \mathrm{mV}$	input resistance approx. $11 \mathrm{k} \Omega$
	$\mathrm{U}: 0 \ldots 200 \mathrm{~V}$	input resistance approx. $10 \mathrm{M} \Omega$
connection:	see connection diagram	

Output:

I: load-independent DC current: Output current limiting: connection:	$\begin{aligned} & 0(4) \ldots 20 \mathrm{~mA} \\ & 22,0 \mathrm{~mA} \\ & \text { see connection diagram } \end{aligned}$	permissible load max. 540Ω
U: load-independent DC voltage:	$0(2) \ldots 10 \mathrm{~V}$	permissible load $\geq 5 \mathrm{k} \Omega$ simultan. permissible load $\geq 1 \mathrm{k} \Omega$ exclusive
Gain adjustment:	trimmer ± 25 \%	(DIP-switch 4 $=0 \mathrm{~N}$)
Offset adjustment:	trimmer ± 25 \%	(DIP-switch 4 $=0 \mathrm{~N}$)
connection:	see connection diagram	

Adjustment:

DIP-switch for range selection:

1	Switch	Function	ON	OFF
2	1	input	U [V]	
	2*	input		U [V]
on off	3*	output	4... $20 \mathrm{~mA} / 2 \ldots . .10 \mathrm{~V}$	0... $20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$
	4	calibration	adjustment with trimmer	fixed calibrated*

*unchangeable factory setting: DIP4=0FF (trimmers are inactive)
Display:

LED status	green, active green, flashing	input signals are in standard range, device ready for use input signals are not in standard range

Environmental conditions:
Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature:
Isolation voltage:

$2,5 \mathrm{kV}$ eff. 1 sec.	input/ output
4 CV	
eff. 1 sec.	auxiliary power
500 V eff. 1 sec.	channel/ channel

Auxiliary power:

Wide range:	$24 \ldots . .250 \mathrm{~V} \mathrm{DC}$
	$90 \ldots 253 \mathrm{~V} \mathrm{AC}$
	$<3 \mathrm{~W}$
Influence of aux. power:	$<0,1 \%$

Characteristics of transmission:

Transmission error:	$<0,12 \%$
Linearity error:	$<0,1 \%$
Temperature error:	$<100 \mathrm{ppm} / \mathrm{K}$
Load influence I:	$<50 \mathrm{ppm}$
	of final value Load influence U:
	$<0,2 \%$
Setting time:	at $1 \mathrm{k} \mathrm{\Omega} \Omega$ load
	$<30 \mathrm{msec}$.

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	2014/35/EU
*minimum deviations possible during	
HF-radiation influence	

Mounting details:

Housing for top hat rail
Type of protection: IP 40 housing
IP 20 clamps
Rail-mounting fixed according to
EN 50022-35 x 7.5 mm
Width:
$22,5 \mathrm{~mm}$
Weight: $\quad 160 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval: CE
Connection: pluggable
screw clamps
$0,2 \ldots 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.
Please check DIP-switch before initial operation!

Ordering information:
Type: TT 2.00 GW 315 wide range

FEATURES

- Inputs:

4 x current 0(4)... 20 mA or
$4 \times$ voltage 0(2)... 10 V

- Outputs simultaneous: $4 x$ current 0(4)... 20 mA and
$4 x$ voltage $0(2) . . .10 \mathrm{~V}$
- Function, switchable:
- fixed calibration or
- adjustable by trimmer
- Pluggable screw-clamps

■ Galvanic 3-way isolation per channel

The galvanic 3-way isolation is used to protect against faulty measurement or damage downstream equipment such as analog control units, control rooms, control systems, PLC units.
The integrated protection circuit with suppressor diode protects the secondary circuit from voltage spikes and transient surges.

Connection diagram:

U_{H} : Auxiliary power

$4 x$
DC current

$4 \times$
DC voltage

Inputs:

U1 [V]: $3-, 9+$
$11[\mathrm{~mA}]: 3-, 10+$ U2 [V]: $4-, 11+$ $12[\mathrm{~mA}]: .4-, 12+$ U3 [V]: $7-, 13+$ 13 [mA]: $7-, 14+$ U4 [V]: $8-, 15+$ 14 [mA]:. $8-, 16+$

Outputs:
U1 [V]: $17-, 18+$
$11[\mathrm{~mA}]: 25-, 26+$
U2 [V]: $\quad 19-, 20+$
$12[\mathrm{~mA}]: 27-, 28+$
U3 [V]: $21-, 22+$
13 [mA]: $29-, 30+$
U4 [V]: $23-, 24+$ 14 [mA]: $31-, 32+$

Schuhmann GmbH \& Co. KG
 Römerstraße 2
 D-74363 Güglingen

Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:

I: DC current:	$0(4) . . .20 \mathrm{~mA}$	input resistance approx. 50Ω
connection:	see connection diagram	
U: DC voltage:	input resistance approx. $500 \mathrm{k} \Omega$ connection:	see connection diagram

Output:

I: load-independent DC current:	$0(4) \ldots 20 \mathrm{~mA}$	permissible load max. 540Ω
Output current limiting:	$22,0 \mathrm{~mA}$	
connection:	see connection diagram	
U: load-independent DC voltage:	$0(2) \ldots 10 \mathrm{~V}$	permissible load $\geq 5 \mathrm{k} \Omega$ simultan. permissible load $\geq 1 \mathrm{k} \Omega$ exclusive
Gain adjustment:	trimmer $\pm 25 \%$	(DIP-switch $4=0 \mathrm{~N})$
Offset adjustment:	trimmer $\pm 25 \%$	(DIP-switch $4=0 \mathrm{~N})$
connection:	see connection diagram	

Adjustment:

DIP-switch for range selection:

1	Switch	Function	ON	OFF
2	1	input	U [V]	1 [mA]
4	2*	input	$4 . . .20 \mathrm{~mA} / 2 \ldots 10 \mathrm{~V}$	$0 \ldots .20 \mathrm{~mA} / 0 \ldots . .10 \mathrm{~V}$
on off	3*	output	4... $20 \mathrm{~mA} / 2 . .10 \mathrm{~V}$	$0 \ldots . .20 \mathrm{~mA} / 0 \ldots . .10 \mathrm{~V}$
	4	calibration	adjustment with trimmer	fixed calibrated*

*unchangeable factory setting: DIP4=0FF (trimmers are inactive)
Display:

LED status	green, active green, flashing	input signals are in standard range, device ready for use input signals are not in standard range

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$ Operating temperature: $-40 \ldots 55^{\circ} \mathrm{C}$
Isolation voltage:
2,5 kV eff. 1 sec . input/ output 4 kV eff. 1 sec . auxiliary power 500 V eff. 1 sec. channel/ channel

Auxiliary power:

Wide range:	$24 \ldots . \ldots 250 \mathrm{VCC}$ $90 \ldots 253 \mathrm{~V} \mathrm{AC}$
	$<5 \mathrm{~W}$
Influence of aux. power:	$<0,1 \%$

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	2014/35/EU
*minimum deviations possible during	
HF-radiation influence	

Mounting details:

Housing for top hat rail
Type of protection: IP 40 housing IP 20 clamps
Rail-mounting fixed according to
EN 50022-35 x 7,5 mm

Width:	45 mm
Weight:	320 g
Material:	Polyamide PA
Flammability class:	V0 (UL94)
Approval:	CE
Connection:	pluggable
	screw clamps
	$0,2 \ldots 2,5 \mathrm{~mm}^{2}$

For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.
Please check DIP-switch before initial operation!

Ordering information:

Type: TT 4.00 GW
wide range

FEATURES

- 1 input:

Current 0(4)... 20 mA or
Voltage 0(2)... 10 V

- 2 outputs:

Current 0(4)... 20 mA/
Voltage 0(2)... 10 V

- Parameterization without auxiliary power via PC-interface

■ Galvanic 4-way isolation of 1 kV

Low internal consumption

FUNCTION

The AV 2.00 SDC is used for duplicating an input signal to 2 galvanically isolated individual output signals. This guarantees a safe decoupling between sensor and evaluation circuit and any influence of other sensor circuits among each other is absolutely impossible.

He is able to process currents respectively voltages within a range of $0 . . .20 \mathrm{~mA}$ or $0 \ldots 10 \mathrm{~V}$. The input is being defined by range start and range end, signal damping as well as fixed limits of error detection can be freely selected. The 2 outputs are separately and individually adjustable for current or voltage output. For each output the range start and range end, minimum/ maximum limits and a fixed value in case of error detection can be adjusted in clear text.

AV 2.00 SDC

Connection diagram:

[^8]| Input: | | |
| :---: | :---: | :---: |
| I: DC current: connection: | $\begin{aligned} & 0(4) \ldots 20 \mathrm{~mA} \\ & \text { terminal } 3-, 4+ \end{aligned}$ | input resistance approx. 10Ω |
| U: DC voltage: connection: | $\begin{aligned} & 0(2) . .10 \mathrm{~V} \\ & \text { terminal } 4-, 3+ \end{aligned}$ | input resistance approx. $50 \mathrm{k} \Omega$ |

Within the described measuring ranges the range start, range end, signal damping as well as the limits for a detection of error can be freely selected.

Output:

I: load-independent DC current: connection output 1: connection output 2:	0(4)... 20 mA terminal $8-, 7+$ terminal $6-, 5+$	permissible load max. 400Ω
U: load-independent DC voltage: connection output 1: connection output 2:	$\begin{aligned} & 0(2) \ldots 10 \mathrm{~V} \\ & \text { terminal } 8-, 7+ \\ & \text { terminal } 6-, 5+ \end{aligned}$	permissible load $\geq 2 \mathrm{k} \Omega$

The 2 outputs are adjustable independently of each other for current or voltage source.
For each output channel the output range start and output range end, the minimum/ maximum limits for current and voltage output as well as a fixed predetermined value in case of error detection can be adjusted in clear text.

Adjustment:

Measuring ranges and parameterization are adjustable in parameter data by KALIB-Software.
You need a PC and the interface adapter USB2 with KALIB-Software.
Preset parameterization (change possible):
Input:
$0 . . .20 \mathrm{~mA}$
Output 1/ 2:
0... 20 mA

Display:

LED status:	green, active green, flashing	input signals are in standard range, device ready for use input out of predetermined limits or exceeding of measuring range

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $\quad 0 . . .55^{\circ} \mathrm{C}$
Isolation voltage:
2,5 kV eff. 1 sec. input/ output 2,5 kV eff. 1 sec . auxiliary power 1,0 kV eff. 1 sec . output $1 /$ output 2

Auxiliary power:

$24 \mathrm{~V} \mathrm{DC:}$	$20 \ldots 30 \mathrm{VDC}$ Influence of auxiliary power:$\quad<2 \mathrm{~W}$

Characteristics of transmission:

Transmission error: $<0,12$ \%
Resolution: $\quad 15 \mathrm{bit}$
Linearity error: $\quad<0,1 \%$
Temperature error: $<100 \mathrm{ppm} / \mathrm{K}$
Load influence $\mathrm{I}: \quad<50 \mathrm{ppm}$
of final value
Load influence U : $\quad<0,2 \%$ at $2 \mathrm{k} \Omega$ load
Setting time: $\quad<50 \mathrm{msec}$.

$$
<50 \mathrm{msec} .
$$

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to EN 50022-35 x 6,2 mm
Width: $\quad 6,2 \mathrm{~mm}$
Weight: $\quad 52 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL 94)
Approval: CE
Connection: screw clamps
$0,14 \ldots 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a distance $>1 \mathrm{~mm}$ to each other. Please check parameterization before initial operation!

Ordering information:	Type: Accessories:	AV 2.00 SDC 24 VDC USB2/ USB-Simulator with KALIB-Software

FEATURES

■ 1 Input:
Current 0(4)... 20 mA or
Voltage 0(2)... 10 V

- Outputs simultaneous: $2 x$ current 0(4)... 20 mA and
$2 x$ voltage 0(2)... 10 V
- Function, switchable:
- fixed calibration or
- adjustable by trimmer
- Pluggable screw-clamps

■ Galvanic 3-way isolation per channel

FUNCTION

The TTV 2.00 GW transfers the input signal to 2 galvanically isolated output channels. The unit has 4 DIP-switches on frontside.
To select the transmission or the signal conversion ranges, use the DIP-switches 1-3.
Fixed calibrated standard measurement ranges, for input and output, are stored in the device: 0(4)... 20 $\mathrm{mA} / 0(2) \ldots 10 \mathrm{~V}=$ DIP-switch 4 OFF.
Each output channel can alternatively be adjusted separately and the individual range can be set. The fine adjustment of the offset and the final value is carried out by trimmer $=$ DIP-switch 4 ON.

The galvanic 3-way isolation is used to protect against faulty measurement or damage downstream equipment such as analog control units, control rooms, control systems, PLC units. The integrated protection circuit with suppressor diode protects the secondary circuit from voltage spikes and transient surges.

TTV 2.00 GW

Connection diagram:

U_{H} : Auxiliary power
Input:
U1 [V]: $3-, 5+$
$11[\mathrm{~mA}]: 3-, 6+$

LED status 1
Range 1
Offset 1
Gain 1
Range 2
Offset 2
Gain 2
LED status 2
Outputs:
U1 [V]: $9-10+$
U2 [V]: $\quad 11-, 12+$
11 [mA]: $13-, 14+$
12 [mA]: $15-, 16+$

[^9]
Input:

I: DC current:	$0(4) \ldots 20 \mathrm{~mA}$	input resistance approx. 50Ω
connection:	terminal $3-, 6+$	
U:DC voltage: connection:	$0(2) \ldots 10 \mathrm{~V}$	input resistance approx. $500 \mathrm{k} \Omega$

Output:

I: load-independent DC current:	$0(4) \ldots . .20 \mathrm{~mA}$	permissible load max. 540Ω
Output current limiting: $22,0 \mathrm{~mA}$		
connection:	see connection diagram	
U: Ioad-independent DC voltage:	$0(2) \ldots 10 \mathrm{~V}$	permissible load $\geq 5 \mathrm{k} \Omega$ simultan. permissible load $\geq 1 \mathrm{k} \Omega$ exclusive
Gain adjustment:	trimmer $\pm 25 \%$	(DIP-switch $4=0 \mathrm{~N}$)
Offset adjustment:	trimmer $\pm 25 \%$	(DIP-switch $4=0 \mathrm{~N}$)
connection:	see connection diagram	

Adjustment:

DIP-switch for range selection:

1	Switch	Function	ON	OFF
2	1	input	U [V]	1 [mA]
4	2*	input	4... $20 \mathrm{~mA} / 2 \ldots 10 \mathrm{~V}$	0... $20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$
on off	3*	output	4... $20 \mathrm{~mA} / 2 . .10 \mathrm{~V}$	0... $20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$
	4	calibration	adjustment with trimmer	fixed calibrated*

*unchangeable factory setting: DIP4=0FF (trimmers are inactive)

Display:

LED status	green, active green, flashing	input signals are in standard range, device ready for use input signals are not in standard range

Environmental conditions:

$\begin{array}{ll}\text { Storage temperature: } & -40 \ldots+70^{\circ} \mathrm{C} \\ \text { Operating temperature: } & -40 \ldots .5^{\circ} \mathrm{C}\end{array}$
Isolation voltage:

2,5 kV eff. 1 sec. input/ output 4 kV eff. 1 sec. auxiliary power

Auxiliary power:

Wide range:	$24 \ldots . .250 \mathrm{~V} \mathrm{DC}$
	$90 \ldots .253 \mathrm{~V} \mathrm{AC}$
	$<3 \mathrm{~W}$
Influence of aux. power:	$<0,1 \%$

Characteristics of transmission:

Transmission error:	$<0,12 \%$	
Linearity error:	$<0,1 \%$	
Temperature error:	$<100 \mathrm{ppm} / \mathrm{K}$	
Load influence $\mathrm{I}:$	$<50 \mathrm{ppm}$ of final value	
Load influence U:		$<0,2 \%$
	at $1 \mathrm{k} \mathrm{\Omega} \Omega \mathrm{load}$	
Setting time:	$<30 \mathrm{msec}$.	

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	$2014 / 35 /$ EU

*minimum deviations possible during
HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 40 housing

IP 20 clamps
Rail-mounting fixed according to
EN 50022-35 x $7,5 \mathrm{~mm}$
Width: $\quad 22,5 \mathrm{~mm}$
Weight: $\quad 160 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval: CE
Connection: pluggable screw clamps
$0,2 \ldots 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.
Please check DIP-switch before initial operation!

FEATURES

■ Input:

Current 0(4)... 20 mA
$1 x$ at MP 1.10 S
$2 x$ at MP 2.10 S
■ Output:
Current 0(4)... 20 mA
$1 x$ at MP 1.10 S
2x at MP 2.10 S
■ No auxiliary power required

- Galvanic 2-way isolation of 500 V

FUNCTION

The MP 1.10 S is used for the galvanic isolation of direct current circuits. The ratio of transmission input to output is 1:1. The transducer has only a low power consumption; this capacity is removed from the measuring signal. As far as load is concerned you have to consider that the internal resistance of the transmitter must be added to the input resistance of the final device and is not supposed to exceed the total load of the measuring transducer.

Disturbances by coupling of different signal circuits as well as earth or mass potential differences can easily be avoided or eliminated afterwards by the MP .10 S . The integrated protective switching with suppressor diode (33 V) protects the secondary circuit from voltage peaks and transient excess voltage. Attention: with output open the primary loop is interrupted.

MP 1.10 S MP 2.10 S

Connection diagram:

[^10]Input:
I: Ioad-independent DC current: $\quad 0$ (4)... 20 mA
input resistance:
max. input current:
$U_{\text {min }}$ input:
connection channel 1:
connection channel 2 :
$0(4) \ldots 20 \mathrm{~mA}$
$R_{i}=R_{A}+135 \Omega$
35 mA
$2,7 \mathrm{~V}+0,02 \mathrm{~A} \times \mathrm{R}_{\mathrm{A}}$ (resistance measuring circuit), e.g. at measuring circuit load of 500Ω :
$2,7 \mathrm{~V}+0,02 \mathrm{~A} \times 500 \Omega=12,7 \mathrm{~V}$ are necessary
terminal $8-, 7+$
terminal 6-, 5+
transfer ratio is 1:1.

Output:

I: load-independent DC current:

0(4)... 20 mA
(input voltage $-2,7 \mathrm{~V}$)

0,02 A

max. 21 mA
terminal 1-, $2+$
terminal $3-, 4+$

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $\quad 0 . . .55^{\circ} \mathrm{C}$
Isolation voltage:
500 V eff. 1 sec . output/ input

Auxiliary power:

As this device operates without auxiliary power the internal resistance Ri of the load has to be considered. Here the load resistance to be connected may not be exceeded.

Characteristics of transmission:

Transmission error: $<0,12 \%$
Linearity error:
Temperature error:
Load influence I:
Setting time: and 20 mA

Directive:

EMC Directive:	$2014 / 30 / E U^{*}$
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to
EN 50022-35 x 6, 2 mm
Width: $\quad 6,2 \mathrm{~mm}$
Weight: $\quad 60 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL 94)
Approval: CE
Connection: screw clamps
$0,14 \ldots 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a
distance $>1 \mathrm{~mm}$ to each other.

Ordering information:	Type: MP 1.10 S	1-channel 2-channel

Title	Specification	PC- Inter- face	Available designs	Auxiliary power	Page
FEEDING ISOLATING AMPLIFIER standard signals, integrated transmitter feeding, $0(4) \ldots 20 \mathrm{~mA}, 0(2) \ldots 10 \mathrm{~V}$					
STV 2.00 GW	input switchable $\pm 20 \mathrm{~mA}, \pm 10 \mathrm{~V}, \pm 60 \mathrm{mV}$ to $\pm 100 \mathrm{~V}$, output simultaneous $\pm 20 \mathrm{~mA}, \pm 10 \mathrm{~V}$, max. 1 kHz , parameterizable	x	G 22,5	24... 250 V DC, $90 \ldots . .253 \mathrm{~V} \mathrm{AC}$	02-01

TTS 1.00 MW	1-channel, input I/ U, output I/ U, fixed calibrated, adjustable, with transmitter feeding	G 12,5	24... 250 V DC, $90 . . .253 \mathrm{~V}$ AC	02-03
TTS 1.14 MW	1-channel, current input $4 \ldots 9,0 \mathrm{~mA} / 4 \ldots 10,2 \mathrm{~mA} / 4 \ldots 13,5 \mathrm{~mA}$ or $4 \ldots 18,0 \mathrm{~mA}$ output I/ U, fixed calibrated, adjustable, with transmitter feeding	G 12,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	02-05
UTS 19.00 GW	input I/ U switchable, output I/ U simultaneous, trimmer	G 22,5	24...250 V DC, 90... 253 V AC	02-07

MTS 1.20 SDC	current input and output, 1:1, with transmitter feeding		G6,2	$20 \ldots 30$ V DC	$02-09$

ANALOG DISTRIBUTOR WITH TRANSMITTER FEEDING distribution of universal analog I/ U input signals, 2 or				
TTSV 2.00 GW	2-channel output I/ U / I/ U, with transmitter feeding	G 22,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	02-11
TTSV 4.00 GW	4-channel output I/ U / I/ U, with transmitter feeding	G 45	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	02-13

LIMIT SWITCHES WITH TRANSMITTER FEEDING
bargraph status display, integrated transmitter feeding, input: 0 (4)... $20 \mathrm{~mA}, 0(2) . .10 \mathrm{~V}$

| GS 2.10 GW | front side push-buttons, output 2 changer,
 with transmitter feeding | G22,5 | $24 \ldots 250 \mathrm{~V} \mathrm{DC}, \mathrm{90...253} \mathrm{~V} \mathrm{AC}$ | $03-87$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

* Designs: $G=$ housing,
$\mathrm{T}=$ housing for door installation,
$E=$ eurocard

FEATURES

■ Input, switchable: Current $\pm 20 \mathrm{~mA}$ or
Voltage $\pm 10 \mathrm{~V}, 60 \mathrm{mV}$ to 100 V
■ Output, simultaneous: Current $\pm 20 \mathrm{~mA}$ and Voltage $\pm 10 \mathrm{~V}$

- Integrated transmitter feeding

■ Linearity tolerance $<0,1$ \% frequency range $0 . . .1$ kHz

- Parameterization via PC-interface
- Galvanic 3-way isolation of 4 kV

FUNCTION

Accurate calibration and high-precision potential isolation: the STV 2.00 GW is a universal Bipolar Feeding Isolating Amplifier with calibrated, switchable measuring ranges for the different analog measuring signals for conversion and galvanic isolation. It has a bipolar input for current or voltage and one bipolar output which can do current and voltage simultaneous.
A LED on front side indicates if the input is within or outside the range.
The different characteristics of transmission can be selected by turn-switch. Fixed calibrated measuring ranges for input and output are stored in position 0...E. See table on side.

At position F the transmission ranges can be individually defined with the USB2-Adapter in connection with KALIB-Software:
Input: absorbability $0,4 \mathrm{~ms} . . .50 \mathrm{sec} .$, range, zero point, final value.
Output: range, zero point, final value, output minimum, output maximum.
With its frequency range of $0 \ldots 1 \mathrm{kHz}$ the STV 2.00 GW is ideal for very fast applications and can be used for e.g. measuring of water hardness, recording of rotation direction and speed, 2- and 3 -wire transmitter feeding.

STV 2.00 GW

Connection diagram:

2-wire transmitter feeding

3-wire transmitter feeding

16 Feeding output
Input I

Input:

I: DC current: connection:	$-20 \ldots 0 \ldots+20 \mathrm{~mA}$ terminal 13-, $14+$	input resistance approx. 10Ω
U: DC voltage: connection $\mathrm{U}_{\text {low }}$ (max. 1 V):	$-10 \ldots . .0 . .+10 \mathrm{~V} / 100 \mathrm{~V}$ terminal $9-, 10+$	input resistance approx. $1 \mathrm{M} \Omega$ (at signals $<200 \mathrm{mV}$ a screened line is recommended!)
connection U (max. 10 V): connection $U_{\text {high }}$ (max. 100 V):	terminal 9 -, $11+$ terminal $9-12+$	
transmitter feeding:	approx. 15 V at $20 \mathrm{~mA}, \mathrm{I}_{\mathrm{k}}=30 \ldots 50 \mathrm{~mA}$	
Output:		
I: load-independent DC current: connection:	$-20 \ldots 0 \ldots+20 \mathrm{~mA}$ terminal $5-, 6+$	permissible load max. 500Ω
U: load-independent DC voltage: connection:	$\begin{aligned} & -10 \ldots 0 \ldots+10 \mathrm{~V} \\ & -12 \ldots 0 \ldots+12 \mathrm{~V} \\ & \text { terminal } 7-, 8+ \end{aligned}$	permissible load $\geq 5 \mathrm{k} \Omega$ permissible load $\geq 6 \mathrm{k} \Omega$

Adjustment:
Range selection by front side turn-switch:

Position	Input	Output	Position	Input	Output
0	4... 20 mA	4... 20 mA	8	20... 0 mA	4... 20 mA
0	0... 20 mA	0... 20 mA	9	$0 . .10 \mathrm{~V}$	0... 20 mA
0	-20...0... +20 mA	-20...0... +20 mA	9	-10...0...+10 V	-20...0... +20 mA
1	4... 20 mA	0... 20 mA	A	$0 . . .10 \mathrm{~V}$	4... 20 mA
2	$0 . . .20 \mathrm{~mA}$	4... 20 mA	B	$0 . .10 \mathrm{~V}$	$0 . . .10 \mathrm{~V}$
3	0... 20 mA	0... 10 V	B	2... 10 V	2... 10 V
3	-20...0... +20 mA	-10... $0 . . .+10 \mathrm{~V}$	B	-10...0...+10 V	-10... $0 . .+10 \mathrm{~V}$
4	4... 20 mA	$0 . .10 \mathrm{~V}$	C	0... 60 mV	0... 20 mA
5	20... 4 mA	0... 20 mA	C	-60...0...+60 mV	-20...0... +20 mA
6	20... 4 mA	4... 20 mA	D	0... 60 mV	$0 . .10 \mathrm{~V}$
7	$20 \ldots .0 \mathrm{~mA}$	0... 20 mA	E	$0 . .100 \mathrm{~V}$	4... 20 mA
F	user-defined adjustment (via KALIB-Software)				

You need a PC to adjust the measuring ranges and parameter for position F as well as KALIB-Software and USB2 interface adapter. Input: absorbability, range, zero point, final value.
Output: range, zero point, final value, output minimum, output maximum.
Display:

LED Status:	green, active red, active	input signals are in standard range, device ready for use input out of predetermined limits

Environmental conditions:	
Storage temperature:	$-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature:	0... $55^{\circ} \mathrm{C}$
Isolation voltage: input-	input-output-auxiliary
Auxiliary power:	
Wide range:	24... 250 V DC
	90... 253
	$<3 \mathrm{~W}$
Infl. of auxiliary power:	< 0,1\%

Characteristics of transmission:

Transmission error:

$0 \mathrm{~Hz} \quad$at Outp. I at Outp. U	$<0,1 \%$ of final value
	$<0,2 \%$ of final value
1 kHz Sine	$<1 \%$
Resolution:	16 bit
Temperature error:	$<100 \mathrm{ppm} / \mathrm{K}$
Load influence I:	$<50 \mathrm{ppm}$
	of final value
Load influence U:	$<100 \mathrm{ppm}$
	at 1 kS load
Sampling rate:	approx. 12 kHz Frequency:
	$\leq 1 \mathrm{kHz}$ sine

Ordering information:

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF -radiation infl.
Mounting details:
Housing for top hat rail
Type of protection: IP 40 housing
IP 20 clamps
Rail-mounting fixed according to
EN 50022-35 x6,2 mm
Width:
$22,5 \mathrm{~mm}$
145 g
$\begin{array}{ll}\text { Material: } & \text { Polyamide PA } \\ \text { Flammability class: } & \text { V0 (UL94) }\end{array}$
$\begin{array}{ll}\text { Material: } & \text { Polyamide } \\ \text { Flammability class: } & \text { V0 (UL94) }\end{array}$
Approval: CE
Connection: pluggable
screw clamps
$0,2 \ldots 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.
Please check switch position before initial operation!

Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Type: STV 2.00 GW	wide range
Accessories: USB2/ USB-Sim. with KALIB-Software	

FEATURES
■ Input:
Current 0(4)... 20 mA or
Voltage 0(2)... 10 V
- Output, simultaneous: Current 0(4)... 20 mA (active or passive) and voltage $0(2) . .10 \mathrm{~V}$
- Integrated transmitter feeding
■ Function, switchable:
- fixed calibration or
- adjustable by trimmer
- Pluggable screw-clamps
Galvanic 3-way isolation

FUNCTION

The TTS 1.00 MW is used for the precise potential isolation of different measuring signals. The unit has 4 DIP-switches on frontside.
To select the transmission or the signal conversion ranges, use the DIP-switches 1-3.
Fixed calibrated standard measurement ranges, for input and output, are stored in the device: $0(4) \ldots 20 \mathrm{~mA} / 0(2) \ldots 10 \mathrm{~V}=$ DIP-switch 40 OFF.
The fine adjustment of the offset and the final value is carried out by trimmer $=$ DIP-switch 40 N .

Its output can do current (active or passive) and voltage simultaneous.
Because of the integrated transmitter feeding, 2-/ 3-wire transmitters will be fed.
The galvanic 3-way isolation is used to protect against faulty measurement or damage downstream equipment such as analog control units, control rooms, control systems, PLC units.
The integrated protection circuit with suppressor diode protects the secondary circuit from voltage spikes and transient surges.

Connection diagram:

$+1[\mathrm{~mA}]$ passive
GND

Feeding output

Schuhmann GmbH \& Co. KG
 Römerstraße 2
 D-74363 Güglingen
 Tel. +4971355056
 E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:

I: DC current: connection:	0(4)... 20 mA terminal $5-, 6+$	input resistance approx. 10Ω
U: DC voltage: connection:	$\begin{aligned} & 0(2) \ldots 10 \mathrm{~V} \\ & \text { terminal } 5-, 4+ \end{aligned}$	input resistance approx. $500 \mathrm{k} \Omega$
transmitter feeding: connection:	approx. $18 . . .21 \mathrm{~V}$ terminal $6-, 3+$	
Output:		
I: Ioad-independent DC current:	0(4)... 20 mA	permissible load max. 540Ω
Output current limiting: connection:	$\begin{aligned} & 22,0 \mathrm{~mA} \\ & \text { terminal } 9-, 10+ \end{aligned}$	
or:		
loop-powered DC current: connection:	0(4)... 20 mA terminal $11-, 12+$	max. permissible voltage 30 V
Caution: do not use output I active (load-independent)and I passive (loop pow.) at the same time		
U : load-independent DC voltage:	$0(2) . . .10 \mathrm{~V}$	permis. load $\geq 5 \mathrm{k} \Omega$ simultaneous permis. load $\geq 1 \mathrm{k} \Omega$ exclusive
connection:	terminal 7-, $8+$	
Gain adjustment:	trimmer ± 25 \%	$($ DIP-switch $4=0 \mathrm{~N})$
Offset adjustment:	trimmer ± 25 \%	$($ DIP-switch $4=0 \mathrm{~N})$

Adjustment:

DIP-switch for range selection:

1	Switch	Function	ON	OFF
$\underline{2}$	1	input	U [V]	1 [mA]
4	2*	input	4... $20 \mathrm{~mA} / 2 \ldots 10 \mathrm{~V}$	$0 . . .20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$
on off	3*	output	4... $20 \mathrm{~mA} / 2 . .10 \mathrm{~V}$	0... $20 \mathrm{~mA} / 0 . .10 \mathrm{~V}$
	4	calibration	adjustment with trimmer	fixed calibrated*

*unchangeable factory setting: DIP4=0FF (trimmers are inactive)
Display:

LED status	green, active green, flashing	input signals are in standard range, device ready for use input signals are not in standard range

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$ Operating temperature: $-40 \ldots+55^{\circ} \mathrm{C}$
Isolation voltage:
2,5 kV eff. 1 sec. input/ output 4 kV eff. 1 sec . auxiliary power
Auxiliary power:

Wide range:	$24 \ldots 250 \mathrm{~V} \mathrm{DC}$ $90 \ldots 253 \mathrm{~V} \mathrm{AC}$ $<3 \mathrm{~W}$
Influence of aux. power:	$<0,1 \%$

Directive:

EMC Directive:	$2014 / 30 / E U^{*}$
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during
HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 30 housing IP 20 clamps
Rail-mounting fixed according to
EN 50022-35 x 7,5 mm
Width: $\quad 12,5 \mathrm{~mm}$
Weight: $\quad 90 \mathrm{~g}$
Material: \quad Polyamide (PA)
Flammability class: Vo (UL94)
Approval: CE
Connection: pluggable screw clamps $0,2 \ldots 2,5 \mathrm{~mm}^{2}$

For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check DIP-switch before initial operation!

Ordering information:
 Type: TTS 1.00 MW
 wide range

FEATURES

■ Input:

Current 4...9,0 mA/ 4...10,2 mA/
4...13,5 mA or 4...18,0 mA

- Output, simultaneous: Current 0(4)... 20 mA (active or passive) and voltage 0(2)... 10 V
- Integrated transmitter feeding

■ Function, switchable: - fixed calibration or - adjustable by trimmer

- Pluggable screw-clamps

Galvanic 3-way isolation

FUNCTION

The TTS 1.14 MW is used for the precise potential isolation of different measuring signals. The unit has 4 DIP-switches on frontside.
To select the transmission or the signal conversion ranges, use the DIP-switches 1-3.
The calibrated measurement ranges for input $4 \ldots 9,0 \mathrm{~mA} / 4 \ldots 10,2 \mathrm{~mA} / 4 \ldots 13,5 \mathrm{~mA} / 4 . . .18,0$ mA as well as on the output side the ranges $0(4) \ldots 20 \mathrm{~mA} / 0(2) \ldots 10 \mathrm{~V}$, are stored in the device $=$ DIP-switch 4 OFF.
The fine adjustment of the offset and the final value is carried out by trimmer $=$ DIP-switch 40 N .

Its output can do current (active or passive) and voltage simultaneous.
Because of the integrated transmitter feeding, 2-/ 3 -wire transmitters will be fed.
The galvanic 3-way isolation is used to protect against faulty measurement or damage downstream equipment such as analog control units, control rooms, control systems, PLC units.
The integrated protection circuit with suppressor diode protects the secondary circuit from voltage spikes and transient surges.

Connection diagram:

+1 [mA] passive GND

Feeding output

Input:

Caution: do not use output I active (load-independent)and I passive (loop pow.) at the same time!
U: load-independent DC voltage: $\quad 0(2) \ldots 10 \mathrm{~V}$ permis. load $\geq 5 \mathrm{k} \Omega$ simultaneous permis. load $\geq 1 \mathrm{k} \Omega$ exclusive
connection:
Gain adjustment:
Offset adjustment:
terminal $7-, 8+$
trimmer $\pm 25 \% \quad$ (DIP-switch $4=0 \mathrm{~N}$)
trimmer $\pm 25 \% \quad$ (DIP-switch $4=0 \mathrm{~N}$)

Adjustment:

DIP-switch for range selection:

Switch $1+2$	Function/ Range	Switch $1+2$	Function/ Range
10 FF $/ 20$ FF	input 4...9,0 mA	$\underline{10 \mathrm{~N} / 20 \mathrm{FF}}$	input 4...10,2 mA
10 FF / $\underline{20 \mathrm{~N}}$	input $4 \ldots 13,5 \mathrm{~mA}$	$\underline{10 \mathrm{~N}} / \underline{20 \mathrm{~N}}$	input 4...18,0 mA

on off

Switch	Function	ON	OFF
3^{*}	output	$4 \ldots 20 \mathrm{~mA} / 2 \ldots 10 \mathrm{~V}$	$0 \ldots 20 \mathrm{~mA} / 0 \ldots .10 \mathrm{~V}$
4	calibration	adjustment with trimmer	fixed calibrated*

*unchangeable factory setting: DIP4=0FF (trimmers are inactive)
Display:
LED status green, active input signals are in standard range, device ready for use green, flashing input signals are not in standard range

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $-40 \ldots+55^{\circ} \mathrm{C}$
Isolation voltage:

$$
\begin{aligned}
& 2,5 \mathrm{kV} \text { eff. } 1 \mathrm{sec} \text {. input/ output } \\
& 4 \mathrm{kV} \text { eff. } 1 \mathrm{sec} . \quad \text { auxiliary power }
\end{aligned}
$$

Auxiliary power:

Wide range:	24...250 V DC
	$90 . .253 \mathrm{~V} \mathrm{AC}$
	$<3 \mathrm{~W}$
Influence of aux. power:	< $0,1 \%$
Characteristics of transmission:	
Transmission error:	<0,12 \%
Linearity error:	< 0,1 \%
Temperature error:	< $100 \mathrm{ppm} / \mathrm{K}$
Load influence I:	$\begin{aligned} & <50 \mathrm{ppm} \\ & \text { of final value } \end{aligned}$
Load influence U:	$\begin{aligned} & <0,2 \% \\ & \text { at } 1 \mathrm{k} \mathrm{\Omega} \text { load } \end{aligned}$
Setting time:	$<30 \mathrm{msec}$.

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 30 housing

$$
\text { IP } 20 \text { clamps }
$$

Rail-mounting fixed according to

	EN 50022-35 x $7,5 \mathrm{~mm}$
Width:	$12,5 \mathrm{~mm}$
Weight:	90 g
Material:	Polyamide (PA)
Flammability class:	V0 (UL94)
Approval:	CE
Connection:	pluggable
	screw clamps
	$0,2 . .2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to	
mount the housing for top hat rail with a	
distance of approx. 5 mm to each other.	
Please check DIP-switch before initial	
operation!	

For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check DIP-switch before initial operation!

FEATURES

■ Input, switchable:
Current 0(4)... $20 \mathrm{~mA}, \pm 10 \mathrm{~mA}$ or
Voltage 0(2)... $10 \mathrm{~V}, \pm 10 \mathrm{~V}$

- Output, simultaneous: Current 0(4)... 20 mA and
Voltage 0(2)... 10 V
- Integrated transmitter feeding

■ Fine adjustment of offset and gain by trimmer

- Galvanic 3-way isolation of 4 kV

FUNCTION

Isolating amplifiers are mainly used for the galvanic isolation or conversion of analog signals. The UTS 19.00 GW is used for the connection of 2 - and 3 -wire transmitters. This guarantees a safe decoupling between sensor and evaluation circuit and any influence of sensor circuits among each other is absolutely impossible. It has one input for current or voltage and one output which can do current and voltage simultaneous. Fine adjustment of offset and gain is being made by trimmer.

The desired input range can be chosen from the table on the side, the adjustment is carried out by turn switch. The output ranges are switchable. The integrated protective switching with suppressor diode protects the secondary circuit from peaks and transient excess voltage.

UTS 19.00 GW

Connection diagram:

3 -wire feeding

Feeding output
5: Input I
6: Input U

Schuhmann GmbH \& Co. KG
 Römerstraße 2
 D-74363 Güglingen
 Tel. +4971355056
 E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:

Measuring range errors at change-over of the individual measuring ranges $\leq 0,5 \%$.

Output:

* Factory setting: transmission 1:1; with Live-Zero transmission.

Position	Input I	Output I	Clamp 9/ 12	Remark
1^{*}	$0 \ldots 20 \mathrm{~mA}$	$0 \ldots 20 \mathrm{~mA}$	Open *	transmission 1:1 with Live-Zero transmission
1^{*}	$4 \ldots .20 \mathrm{~mA}$	$4 \ldots 20 \mathrm{~mA}$	Open *	Closed
1	$0 \ldots 20 \mathrm{~mA}$	$4 \ldots 20 \mathrm{~mA}$	basic offset at output 4 mA	

Display:

LED power green, active device active

Environmental conditions:

$\begin{array}{ll}\text { Storage temperature: } & -40 \ldots+70^{\circ} \mathrm{C} \\ \text { Operating temperature: } & 0 \ldots 55^{\circ} \mathrm{C} \\ \text { Isolation voltage: } & 4 \mathrm{kV} \text { eff. } 1 \mathrm{sec} .\end{array}$ input-output-auxiliary power

Auxiliary power:

Wide range:	$24 \ldots .250 \mathrm{~V} \mathrm{DC}$ Influence of auxiliary power:
Characteristics of transmission:	

Directive:

EMC Directive: 2014/30/EU*
Low Voltage Directive: 2014/35/EU
*minimum deviations possible during
HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20 housing

$$
\text { IP } 20 \text { clamps }
$$

Rail-mounting fixed according to
EN 50022-35 x 7,5 mm
Width: $\quad 22,5 \mathrm{~mm}$
Weight: $\quad 140 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval: CE
Connection: screw clamps
$\leq 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check switch position before initial operation!

Ordering information:

Type: UTS 19.00 GW wide range

FEATURES

■ Input:
current 0(4)... 20 mA
■ Output: current 0(4)... 20 mA

■ Integrated 2-wire transmitter feeding

■ Galvanic 3-way isolation of 500 V

Low internal consumption

FUNCTION

The MTS 1.20 SDC is used fort he exact potential isolation of different measuring signals. The galvanic 3-way isolation protects agains mismeasurment or damage of the following instruments, such as analog control devices, control rooms, guidiance systems, PLC units. The transmission of input and output is 1:1. It is possible to transmit Live-Zero.

The integrated protective switching with suppressor diode protects the secondary circuit from voltage peaks and transient excess voltage. The MTS 1.20 SDC also has an integrated 2-wire transmitter feeding.

MTS 1.20 SDC

Connection diagram:

[^11]
Input:

I: Ioad-independent DC current: connection:	$0(4) . .20 \mathrm{~mA}$ terminal $6-, 5+$$\quad$ input resistance approx. 20Ω
Transmitter feeding:	max. 22 V max. 26 mA connection:
	terminal $5-, 7+$

Type	Input I	loop- powered	Output I	Remark
MTS 1.20 SDC	$(0) 4 \ldots 20 \mathrm{~mA}$	yes	$(0) 4 \ldots 20 \mathrm{~mA}$	with Live-Zero transmission

Output:

I: Ioad-independent DC current: 0 (4)... 20 mA permissible load max. 400Ω connection: terminal 3-, $4+$

Display:

LED status: green, active device ready for use

Environmental conditions:

$\begin{array}{ll}\text { Storage temperature: } & -40 \ldots+70^{\circ} \mathrm{C} \\ \text { Operating temperature: } & 0 \ldots 55^{\circ} \mathrm{C}\end{array}$
Isolation voltage:

> 500 V eff. 2 sec. inp./ auxiliary power 500 V eff. 2 sec. outp./ auxiliary power 500 V eff. 2 sec. output/ input

Auxiliary power:

24 V DC:	$20 \ldots 30 \mathrm{VDC}$ Influence of auxiliary power:$\quad<1,5 \mathrm{~W}$

Characteristics of transmission:

Transmission error:	$<0,12 \%$
Linearity error:	$<0,1 \%$
Temperature error:	$<100 \mathrm{ppm} / \mathrm{K}$
Load influence I:	$<0,4 \%$
Setting time:	
of final value	
	$<50 \mathrm{msec}$.

Directive:

EMC Directive:	$2014 / 30 / E U^{*}$
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to

Ordering information:

Type: MTS 1.20 SDC $24 \mathrm{~V} D C$ transmitter feeding

FEATURES

■ 1 Input:
Current 0(4)... 20 mA or
Voltage 0(2)... 10 V

- Outputs simultaneous: $2 x$ current 0(4)... 20 mA and
$2 x$ voltage 0(2)... 10 V
- Integrated transmitter feeding

■ Function, switchable: - fixed calibration or - adjustable by trimmer

■ Pluggable screw-clamps
■ Galvanic 3-way isolation per channel

FUNCTION

The TTSV 2.00 GW transfers the input signal to 2 galvanically isolated output channels. The unit has 4 DIP-switches on frontside.
To select the transmission or the signal conversion ranges, use the DIP-switches 1-3.
Fixed calibrated standard measurement ranges, for input and output, are stored in the device: 0(4)... 20 $\mathrm{mA} / 0(2) \ldots 10 \mathrm{~V}=$ DIP-switch 40 FF.
Each output channel can alternatively be adjusted separately and the individual range can be set. The fine adjustment of the offset and the final value is carried out by trimmer $=$ DIP-switch 4 ON.

Because of the integrated transmitter feeding, 2-/ 3-wire transmitters will be fed. The galvanic 3-way isolation is used to protect against faulty measurement or damage downstream equipment such as analog control units, control rooms, control systems, PLC units. The integrated protection circuit with suppressor diode protects the secondary circuit from voltage spikes and transient surges.

Connection diagram:

Feeding output
7: input U
6: input I

Schuhmann GmbH \& Co. KG
 Römerstraße 2
 D-74363 Güglingen
 Tel. +4971355056
 E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:

Adjustment:
DIP-switch for range selection:

1	Switch	Function	ON	OFF
2	1	input	U [V]	1 [mA]
4	2*	input	4... $20 \mathrm{~mA} / 2 \ldots 10 \mathrm{~V}$	$0 . . .20 \mathrm{~mA} / 0 \ldots . .10 \mathrm{~V}$
on off	3*	output	4... $20 \mathrm{~mA} / 2 . .10 \mathrm{~V}$	$0 \ldots .20 \mathrm{~mA} / 0 \ldots . .10 \mathrm{~V}$
	4	calibration	adjustment with trimmer	fixed calibrated*

*unchangeable factory setting: DIP4 $=$ OFF (trimmers are inactive)
Display:

LED status	green, active green, flashing	input signals are in standard range, device ready for use input signals are not in standard range

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $-40 \ldots . .55^{\circ} \mathrm{C}$
Isolation voltage: $2,5 \mathrm{kV}$ eff. $1 \mathrm{sec} . \quad$ input/ output
4 kV eff. $1 \mathrm{sec} . \quad$ auxiliary power
500 V eff. $1 \mathrm{sec} . \quad$ channel/ channel

Auxiliary power:

Wide range:	$\begin{aligned} & 24 \ldots .250 \mathrm{~V} \text { DC } \\ & 9 \ldots . .253 \mathrm{~V} \mathrm{AC} \\ & <4 \mathrm{~W} \end{aligned}$
Influence of aux. power:	<0,1\%
Characteristics of transmission:	
Transmission error:	<0,12 \%
Linearity error:	< 0,1\%
Temperature error:	< $100 \mathrm{ppm} / \mathrm{K}$
Load influence I:	$<50 \mathrm{ppm}$ of final value
Load influence U:	<0,2 \%
	at $1 \mathrm{k} \Omega \mathrm{load}$
Setting time:	< 30 msec .

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	2014/35/EU
*minimum deviations possible during	

HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 40 housing
IP 20 clamps
Rail-mounting fixed according to

EN 50022-35 $\times 7,5 \mathrm{~mm}$	
	$22,5 \mathrm{~mm}$
	160 g
	Polyamide PA
	V0 (UL94)
CE	
	pluggable
screw clamps	
$0,2 \ldots .2,5 \mathrm{~mm}^{2}$	

For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.
Please check DIP-switch before initial
operation!
Ordering information: Type: TTSV 2.00 GW wide range

FEATURES

■ 1 Input:
Current 0(4)... 20 mA or
Voltage 0(2)... 10 V

- Outputs simultaneous: $4 x$ current 0(4)... 20 mA and
$4 x$ voltage 0(2)... 10 V
- Integrated transmitter feeding

■ Function, switchable: - fixed calibration or - adjustable by trimmer

■ Pluggable screw-clamps
■ Galvanic 3-way isolation per channel

FUNCTION

The TTSV 4.00 GW transfers the input signal to 4 galvanically isolated output channels. The unit has 4 DIP-switches on frontside.
To select the transmission or the signal conversion ranges, use the DIP-switches 1-3.
Fixed calibrated standard measurement ranges, for input and output, are stored in the device: 0(4)... 20 $\mathrm{mA} / 0$ (2) ... $10 \mathrm{~V}=$ DIP-switch 40 FF.
Each output channel can alternatively be adjusted separately and the individual range can be set. The fine adjustment of the offset and the final value is carried out by trimmer $=$ DIP-switch 40 N .

Because of the integrated transmitter feeding, 2-/ 3 -wire transmitters will be fed. The galvanic 3-way isolation is used to protect against faulty measurement or damage downstream equipment such as analog control units, control rooms, control systems, PLC units. The integrated protection circuit with suppressor diode protects the secondary circuit from voltage spikes and transient surges.

Connection diagram:

Feeding output

Feeding output

- $10 / 11 \begin{aligned} & \text { 11: input U } \\ & 10 \text { : input I }\end{aligned}$

Schuhmann GmbH \& Co. KG
 Römerstraße 2
 D-74363 Güglingen
 Tel. +4971355056
 E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:

I: DC current: connection:	0 (4)... 20 mA terminal 3-, 10+	input resistance approx. 50Ω
U: DC voltage: connection:	$\begin{aligned} & 0(2) \ldots 10 \mathrm{~V} \\ & \text { terminal } 3-, 11+ \end{aligned}$	input resistance approx. $500 \mathrm{k} \Omega$
Transmitterspeisung:	ca. $20 \ldots 24 \mathrm{~V}$, max. $20 \mathrm{~mA} / 22 \mathrm{~V}$	
Output:		
I: load-independent DC current: Output current limiting: connection:	$\begin{aligned} & 0(4) \ldots 20 \mathrm{~mA} \\ & 22,0 \mathrm{~mA} \\ & \text { see connection di } \end{aligned}$	permissible load max. 540Ω
U: load-independent DC voltage:	0 (2)...10 V	permissible load $\geq 5 \mathrm{k} \Omega$ simultan. permissible load $\geq 1 \mathrm{k} \Omega$ exclusive
Gain adjustment:	trimmer ± 25 \%	(DIP-switch $4=0 \mathrm{~N})$
Offset adjustment:	trimmer ± 25 \%	(DIP-switch 4 $=0 \mathrm{~N}$)
connection:	see connection diagram	

Adjustment:
DIP-switch for range selection:

on off

Switch	Function	ON	OFF
1	input	$\mathrm{U}[\mathrm{V}]$	$\mathrm{I}[\mathrm{mA}]$
2^{*}	input	$4 \ldots 20 \mathrm{~mA} / 2 \ldots 10 \mathrm{~V}$	$0 \ldots 20 \mathrm{~mA} / 0 \ldots .10 \mathrm{~V}$
3^{*}	output	$4 \ldots 20 \mathrm{~mA} / 2 \ldots 10 \mathrm{~V}$	$0 \ldots 20 \mathrm{~mA} / 0 \ldots . .10 \mathrm{~V}$
4	calibration	adjustment with trimmer	fixed calibrated*

*unchangeable factory setting: DIP4 $=0$ FF (trimmers are inactive)
Display:

LED status	green, active green, flashing	input signals are in standard range, device ready for use input signals are not in standard range

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $-40 \ldots . .55^{\circ} \mathrm{C}$
Isolation voltage:

$$
\begin{aligned}
& \begin{array}{l}
2,5 \mathrm{kV} \text { eff. } 1 \mathrm{sec} . \\
4 \mathrm{kV} \text { eff. } 1 \mathrm{sec} . \\
500 \mathrm{e} \text { / outiary power } \\
500 \mathrm{Vff} .1 \mathrm{sec} .
\end{array} \text { channel/ channel }
\end{aligned}
$$

Auxiliary power:

Wide range:	$24 \ldots .250 \mathrm{~V} \mathrm{DC}$
	$90 \ldots 253 \mathrm{~V} \mathrm{AC}$
	$<6 \mathrm{~W}$
Influence of aux. power:	$<0,1 \%$

Characteristics of transmission:

Transmission error:	$<0,12 \%$
Linearity error:	$<0,1 \%$
Temperature error:	$<100 \mathrm{ppm} / \mathrm{K}$
Load influence I:	$<50 \mathrm{ppm}$ of final value
Load influence U:	$<0,2 \%$
	$<0,1 \mathrm{k} \Omega$ load at Setting time:
	$<30 \mathrm{msec}$.

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 40 housing IP 20 clamps
Rail-mounting fixed according to
EN 50022-35 x 7,5 mm
Width: $\quad 45 \mathrm{~mm}$
Weight: $\quad 320 \mathrm{~g}$
Material: \quad Polyamide PA
Flammability class: V0 (UL94)
Approval: CE
Connection: pluggable
screw clamps
$0,2 \ldots 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.
Please check DIP-switch before initial operation!

Title	Specification	PC- Inter- face	Available designs	Auxiliary power	Page
LIMIT SWITCHES analog input signals, 0 (4)... $20 \mathrm{~mA}, 0(2) . . .10 \mathrm{~V}, 2$ changer, integrated 4-digits display, energy and drop-out delays per relay, parameterizable					
DGS 1.00 GW	1-channel, current or voltage input, tranmitter feeding, software parameterizable	X	G 22,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	03-01
$\begin{aligned} & \text { DGS } 1.00 \text { GW } \\ & 148 \end{aligned}$	1-channel, top value measurement $\mathrm{f}=6 \mathrm{~Hz}$ (half sinus), current or voltage input, tranmitter feeding, software parameterizable	X	G 22,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	$\begin{aligned} & 03- \\ & 01-x x \end{aligned}$
DGW 1.00 TW	1-channel, current or voltage input, transmitter feeding		T	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	03-13
DGS 2.00 GW	2-channel, current or voltage input, tranmitter feeding, software parameterizable t	X	G 22,5	24... 250 V DC, $90 \ldots . .253 \mathrm{~V} \mathrm{AC}$	03-17
DGW 2.00 TW	2-channel, current or voltage input, transmitter feeding		T	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	03-29

temperature sensor, 2 changer, integrated 4-digits display, energy and drop-out delays per relay, function temperature monitor and temperature limiter, parameterizable					
DGS 2.01 GW	PT 100 input signal	X	G 22,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	03-33
DGW 2.01 TW	PT 100 input signal		T	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	03-45
GSP 2.01 SDC	input PT 100, output: 2 closer max. $100 \mathrm{~mA} / 30 \mathrm{~V}$	X	G 6,2	20... 30 V DC	03-49
GSP 2.81 SDC	input KTY signal, output: 2 closer max. $100 \mathrm{~mA} / 30 \mathrm{~V}$	X	G 6,2	20... 30 V DC	03-51

TEMPERATURE MEASURING TRANSDUCER
temperature sensor with monitoring function,
analog output 0(4)... $20 \mathrm{~mA} / 0$ (2)... 10 V , input PT 100, PT 1000, NI 1000, KTY, thermocouples etc.

	input: PT 100, PT 500, PT 1000, NI 1000, different KTY, poti up to 5 KOhms, thermocouples(2) J, K, T, R, S, B, E, L, etc. connection: 2-, 3- and 4-wire, alarm function, detection of sensor break and short-circuit, temperature decrease, trend function output: 0(4)...20 mA or 0(2)...10 V, 2 closer as limit switch, parameterizable	X		

More devices see back page

[^12]Year
Warranty

Title	Specification	PC-Interface	Available designs	Auxiliary power	Page
UNIVERSAL LIMIT SWITCH 2×8-digit LCD-display, scalable analog output, transmitter feeding, sensor inputs I, U, PT $100,0 \ldots 100 \mathrm{~V}, 0 \ldots 50 \mathrm{mV}$, thermocouples, etc., parameterizable					
DGS 4.00 GW	input 1: PT 100, PT1000, NI, KTY, thermocouples, resistance, input 2: 0(4)... $20 \mathrm{~mA} / 0(2) . .10 \mathrm{~V}$ output: 4 relays $=4$ changer, I / U	X	G 45	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	03-53
DGS 6.00 GW	input 1: PT 100, PT1000, NI, KTY, thermocouples, resistance, input 2: 0(4)... $20 \mathrm{~mA} / 0(2) . .10 \mathrm{~V}$ output: 6 relays $=6$ changer, I / U	X	G 45	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	03-53

$|$| ELECTRODE RELAY |
| :--- |
| input $2 \times$ electrode feeding max. $\mathbf{1 , 5} \mathbf{~ m A / 1 0 ~ V ~ A C , ~ c o n d u c t i v i t y ~ a d j u s t a b l e , ~ p a r a m e t e r i z a b l e ~}$ |

ER 2.00 MW	input: 4 electrodes, output: 2 changer	X	$G 12,5$	$24 \ldots 250 \mathrm{~V} \mathrm{DC,90} \mathrm{\ldots 253V} \mathrm{AC}$	$03-83$

LIMIT SWITCHES bargraph status display, input: 0(4)... $20 \mathrm{~mA}, 0(2)$... 10 V					
GS 2.00 GW	front side push-buttons, output 2 changer		G 22,5	24... 250 V DC, $90 \ldots . .253 \mathrm{~V} \mathrm{AC}$	03-85
GS 2.10 GW	front side push-buttons, output 2 changer, with transmitter feeding		G 22,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	03-87
LIMIT SWITCHES indication of contact state by LED, Min-Max-Function/ tendency/ alarm/ window, parameterizable					
GSP 2.00 SDC	input 0(4)... 20 mA and $0(2) \ldots 10 \mathrm{~V}$, output: 2 closer max. $100 \mathrm{~mA} / 30 \mathrm{~V}$	X	G6,2	20... 30 V DC	03-89
GSP 3.00 SDC	input 0(4)... 20 mA and $0(2) \ldots 10 \mathrm{~V}$, output: 3 closer with common root to 24 V	X	G6,2	20... 30 V DC	03-91
GSP 4.00 SDC	input 0(4)...20 mA and 0(2) ... 10 V , output: 4 closer with common root to 24 V	X	G6,2	20... 30 V DC	03-91

More devices see next page

$$
\text { * Designs: } \quad \begin{aligned}
\mathrm{G} & =\text { housing, } \\
\mathrm{T} & =\text { housing for door installation, } \\
\mathrm{E} & =\text { eurocard }
\end{aligned}
$$

Title	Specification	PC- Inter- face	Available designs	Auxiliary power	Page
FREQUENCY INPUT LIMIT SWITCHES namur or square wave signal, parameterizable					
GSF 2.00 SDC	input: frequency $0 . . .10 \mathrm{kHz}$, namur/ contact, output: 2 closer max. $100 \mathrm{~mA} / 30 \mathrm{~V}$	X	G 6,2	20...30 V DC	03-93
GSF 2.00 SDC 021	input: frequency $0 . . .10 \mathrm{kHz}$, square wave signal 24 VDC , output: 2 closer max. $100 \mathrm{~mA} / 30 \mathrm{~V}$	X	G 6,2	20...30 V DC	03-95
LIVE-ZERO MONITORING DEVICE control of current loops $4 . . .20 \mathrm{~mA}$, self-monitored closed current circuit					
GSP 2.04 SDC	output: 2 closer max. $100 \mathrm{~mA} / 30 \mathrm{~V}$, parameterizable	X	G 6,2	20... 30 V DC	03-97
ST 1.00 SDC	standard signals I-U/I-U, calibrated switching/ Live-Zero input monitoring: transistor output		G 6,2	20... 30 V DC	01-01

[^13]Year
Warranty

FEATURES

■ Input:
Current 0(4)...20mA or
Voltage 0(2)... 10 V

- Output:

2 relays with change over contacts
■ 2-wire transmitter feeding

- Parameterization and setting via push-button or integrated interface
- Actual value indication via display

3-Way galvanic insulation of 4 kV

FUNCTIONALITY

The digital DGS 1.00 GW is used for limit value monitoring of standardised signals. The parameterization is done by the two front side push-buttons and the 4-digit display or via the integrated interface with the USB2 interface/ USB-Simulator in connection with the KALIB-Software. The parameter files can be stored and easily transferred to other devices. The 4-digit actual value display is freely scalable. In relation to the input, the switch-on and switch-off points (limit values) of the two independent relays

can be freely defined. This automatically results in a hysteresis. Hysteresis, pick-up and drop-out delays and the behaviour of the relays in case of sensor break and alarm limits of the relays can be set separately. The relay states are indicated by LEDs on the front. The DGS 1.00 GW has an additional integrated 2-wire transmitter feeding.

PRESENTATION NOTES

Symbolism of buttons

Symbolism of arrows
\longrightarrow logical transition in the program flow

Symbolism of the display
(2) number flashes on the display
. decimal point representation
\square space

MENU OVERVIEW

i
Program sections with can be protected
from changing by setting a password.

Legend: select continue switch level home $\leftrightarrow \rightarrow$ Automatic display change: display channel 1 display channel 2

CHANGE VALUE (to change, select in the respective menu item with \uparrow):

Change value:

Define decimal point position:

Remove decimal point:

Remove digits:

Description of the main menu
Display channel

Home function

By using the home function it is possible to jump directly to the start, independent of the current menu window. To do this, press the red and black buttons simultaneously for two seconds. A short HOTIE appears on the screen. Previous entries are thereby discarded.

LIMIT VALUES RELAY 1 (EQUIVALENT FOR RELAY 2)

Legend: select continue switch level home Automatic display change: display channel 1 display channel 2

Legend: select continue switch level home Automatic display change: display channel 1 display channel 2

ALARM FUNCTION FOR RELAY 1 (EQUIVALENT FOR RELAY 2)
Description Display Selection/Input
alarm function of the relay
alarm function of the relay
no alarm or sensor monitoring
relay $=$ OFF when exceeding/dropping below the alarm limits
relay $=0 \mathrm{~N}$ when exceeding/dropping below the alarm limits
relay $=0 \mathrm{~N}$ when exceeding/dropping below the alarm limits, maintains the status until locking is released
relay $=$ OFF when exceeding/dropping below the alarm limits, maintains the status until locking is released
upper alarm threshold
lower alarm threshold
end of the alarm menu

pping

EXAMPLES

LIMIT VALUE OPERATION MODE

A current input of $4 \ldots 20 \mathrm{~mA}$ should be scaled to a range of $0 \ldots 100$. The upper limit value is 80 and the lower limit value is 30 . The effects on relay 1 are shown with an example process value.

DGS settings:	
in.iph	curr
in.til	20 mA
inco	4 mA
dEc.P	-----
Sc.Lo	0.000
Sc.it,	100.0
ri.Fc	LI.--

WINDOW OPERATION MODE

A current input of 4... 20 mA should be scaled to a range of $0 \ldots 100$. In window mode the upper limit value is 80 and the lower limit value is 30 . The hysteresis is set to a value of 10 here. The effects on relay 1 are shown with an example process value.

DGS settings:

in.iph	curr
initil	20 mA
inco	4 mA
dEc.P	---.-
Sc.Lo	0.000
Sc.H,	100.0
-1.Fc	Li.こ=
HSSt	10.00

Relay switch on when limit is exceeded or undershot
Legend:

$\cdots L_{1} . H_{1}=80.00$ м"mın $L_{1} . L_{0}=30.00$ r.dir $=$ n.oIE पIU HSSE= 10.00

Relay switch off when limit is exceeded or undershot

EXAMPLES

ALARMS

A current input of $4 . . .20 \mathrm{~mA}$ should be scaled to a range of $0 \ldots 100$. The device is operated in limit value mode with the limits 60 and 30 . Additionally, alarms are now used. For example, the upper alarm limit is defined at 80 and the lower alarm limit at 15 . In the following examples the possible alarm settings are explained.

DGS settings:

In.Ph	curr
In.HI	20 mA
In.Lo	4 mA
dEc. P	.---
Sc.Lo	0.000
Sc.H.	100.0
ri.Fc	LI.--
ri.on	60.00
ri.or	30.00
RL.HI	80.00
RL.Lo	15.00

Single exceeding or dropping below the alarm limits switches relay permanently ON
Alarm function: on. $\mathbf{B H}$

Single exceeding or dropping below the alarm limits switches relay permanently OFF
Alarm function: or. BH' $^{\prime}$

TIME DELAY

A current input of $4 . . .20 \mathrm{~mA}$ should be scaled to a range of $0 \ldots 100$. An upper limit value of 80 and a lower limit value of 30 are defined. Additionally a time delay of 2 seconds for switching on and 4 seconds for switching off is set. The effects on relay 1 shall be shown by an example process value.

DGS settings:	
In.Ph	curr
in.til	20 mA
in.lo	4 mA
dEc.P	---
Scilo	0.000
Sc.H,	100.0
ri.Fc	Li.--
t.on	2 s
t.ow	4s

Connection diagram:

2-wire transmitter

Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:
I: impressed direct current: connection:
U : impressed DC voltage: connection:
Transmitter feeding: connection:

0(4)... 20 mA terminal 5 -, 6 +
$0(2) \ldots 10 \mathrm{~V}$ terminal $5-, 8+$
ca. 20 V at 20 mA
terminal $6-, 7+$

Output:

2 relay outputs:
max. switching current:
max. switching voltage:
mechanical life:
contact lifetime:
wiring:

Adjustment::

The functionality of the device is adjustable via two front side push buttons and the display or via the KALIB-Software. For this you need a PC and the USB2 interface/ USB-Simulator in connection with the KALIB-Software.

Display:

4-digit LC-display with four bars to indicate the respective relay or input channel that is currently being processed or displayed.

Enviormental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $0 . . .55^{\circ} \mathrm{C}$
Insulation voltage: $\quad 4 \mathrm{kV}$ eff. 1 sec .
Input/ output/ auxiliary voltage: 3 kV eff. 1 sec.

Auxiliary power:

Wide range: \quad| | $24 \ldots 250 \mathrm{~V} \mathrm{DC}$ |
| :--- | :--- |
| | $90 \ldots 253 \mathrm{~V} \mathrm{AC}$ |
| | $<3 \mathrm{~W}$ |

Characteristics of transmission:

Linearity error:
$<0,2 \%$ of final value
Temperature error:
< 100 ppm/K

Directive:

EMV directive: 2014/30/EU*
Low voltage directive: 2014/35/EU
*slight deviation is possible during the interference of the HF radiation

Mounting details

Housing for top hat rail:
Protection class: IP 30 housing
IP 20 plug-in terminals
Mounting rail fastening according to:
EN 50022-35 x 7,5 mm
22,5 mm
Width:
Weight:
Material:
Flammability class:
Approval:
Connection type:
pluggable
screw terminals
0,2...2,5 mm²
For safety reasons, it is recommended to mount the housings for top-hat rail with a distance of approx. 5 mm between each other

Order information:

Type: DGS 1.00 GW wide range
Accessories: USB2 / USB-Simulator with KALIB-Software

FEATURES

■ Input:
Top value measurement: $f=6 \mathrm{~Hz}$
(half sinus)
Input: 0(4)... 20 mA
■ Output:
2 relays with change over contacts
■ 2-wire transmitter feeding

- Parameterization and setting via push-button or integrated interface
- Actual value indication via display

■ 3-Way galvanic insulation of 4 kV

FUNCTIONALITY

The digital DGS 1.00 GW 148 is used for the top value measurement: $\mathrm{f}=6 \mathrm{~Hz}$ (half sinus). The parameterization is done by the two front side push-buttons and the 4-digit display or via the integrated interface with the USB2 interface/ USBSimulator in connection with the KALIB-Software. The parameter files can be stored and easily transferred to other devices. The 4-digit actual value display is freely scalable. In relation to the input, the switch-on and switch-off points (limit valu-
es) of the two independent relays can be freely defined. This automatically results in a hysteresis. Hysteresis, pick-up and drop-out delays and the behaviour of the relays in case of sensor break and alarm limits of the relays can be set separately. The relay states are indicated by LEDs on the front. The DGS 1.00 GW 148 has an additional integrated 2-wire transmitter feeding.

PRESENTATION NOTES

Symbolism of buttons

Symbolism of arrows
\longrightarrow logical transition in the program flow

Symbolism of the display
(2) number flashes on the display
. decimal point representation
\square space

MENU OVERVIEW

from changing by setting a password.

CHANGE VALUE (to change, select in the respective menu item with \uparrow):

Change value:

preset value	change 1st digit	changed to „6"	confirm value	1st digit changed	change 2nd digit	changed to „3"	confirm valu	value changed to „1.036"	confirm 3x for 3rd +4 th digit,
	\uparrow						$\Leftrightarrow \rightarrow$		save and return

Define decimal point position:

Remove decimal point:

Remove digits:

Legend:	select (1)	continue	switch level	$\text { home } \mathrm{D}^{\mathrm{D}} \mathrm{O}$	Automatic display change:	display channel 1	display channel 2
03-03	-XX						Schuhmann

Description of the main menu

Home function

By using the home function it is possible to jump directly to the start, independent of the current menu window. To do this, press the red and black buttons simultaneously for two seconds. A short HOME appears on the screen. Previous entries are thereby discarded.

LIMIT VALUES RELAY 1 (EQUIVALENT FOR RELAY 2)

DEFINITION OF THE PARAMETERS FOR INPUT 1

initial value of the input signal (physical)
end value of the input signal (physical)
damping of the input signal
selection of decimal point position
\rightarrow display of actual value and
limit value calculation
lower scaling value of the input signal

- display of the actual value (minimum)
upper scaling value of the input signal
- display of the actual value (maximum)

Legend: select continue switch level home Automatic display change: display channel 1 display channel 2

DEFINITION OF PARAMETERS FOR RELAY 1 (EQUIVALENT FOR RELAY 2)
Description Display Selection/Input

Legend:	select (1)		switch level ○)	$\text { home } \bigcirc$	Automatic display change:	display channel 1 $\square \longleftarrow \square \square$	display channel 2
03-07	XX						chuhmann

ALARM FUNCTION FOR RELAY 1 (EQUIVALENT FOR RELAY 2)
Description Display Selection/Input
alarm function of the relay
no alarm or sensor monitoring
alarm function of the relay
no alarm or sensor monitoring
relay $=$ OFF when exceeding/dropping below the alarm limits
relay $=0 N$ when exceeding/dropping below the alarm limits
relay $=0 \mathrm{~N}$ when exceeding/dropping below the alarm limits, maintains the status until locking is released
relay $=$ OFF when exceeding/dropping below the alarm limits, maintains the status until locking is released
upper alarm threshold
lower alarm threshold
end of the alarm menu

pping

EXAMPLES

LIMIT VALUE OPERATION MODE

A current input of $4 \ldots 20 \mathrm{~mA}$ should be scaled to a range of $0 \ldots 100$. The upper limit value is 80 and the lower limit value is 30 . The effects on relay 1 are shown with an example process value.

DGS settings:	
In.Ph	curr
in. Hin_{1}	20 mA
inco	4 mA
dEc.P	--
Sc.io	0.000
Sc.it,	100.0
ri.Fc	Li.--

Upper limit value is greater than lower limit value
Legend:

WINDOW OPERATION MODE

A current input of 4... 20 mA should be scaled to a range of $0 \ldots 100$. In window mode the upper limit value is 80 and the lower limit value is 30 . The hysteresis is set to a value of 10 here. The effects on relay 1 are shown with an example process value.

DGS settings:

in.iph	curr
in.Hi,	20 mA
inco	4 mA
dEc.P	-----
Sc.Lo	0.000
Sc.H,	100.0
ri.Fc	Lİこ
HSSt	10.00

Relay switch on when limit is exceeded or undershot
Legend:

$\cdots L_{1} H_{1}=80.00$ wime $L_{1} . L_{0}=30.00$ r.dir $=$ n.oIE पIU HSSE= 10.00

Relay switch off when limit is exceeded or undershot

EXAMPLES

ALARMS

A current input of $4 . . .20 \mathrm{~mA}$ should be scaled to a range of $0 \ldots 100$. The device is operated in limit value mode with the limits 60 and 30 . Additionally, alarms are now used. For example, the upper alarm limit is defined at 80 and the lower alarm limit at 15 . In the following examples the possible alarm settings are explained.

DGS settings:

In.Ph	curr
in.iti	20 mA
inilo	4 mA
dEc.P	-----
Sc.Lo	0.000
Sc.H,	100.0
ri.Fc	Li.--
ri.on	60.00
ri.or	30.00
RL.H,	80.00
BLL Lo	15.00

Single exceeding or dropping below the alarm limits switches relay permanently ON
Alarm function: on. $\mathbf{B H}$

Single exceeding or dropping below the alarm limits switches relay permanently OFF
Alarm function: or. BH' $^{\prime}$

TIME DELAY

A current input of $4 . . .20 \mathrm{~mA}$ should be scaled to a range of $0 \ldots 100$. An upper limit value of 80 and a lower limit value of 30 are defined. Additionally a time delay of 2 seconds for switching on and 4 seconds for switching off is set. The effects on relay 1 shall be shown by an example process value.

DGS settings:	
In.Ph	curr
in.til	20 mA
inco	4 mA
dEc.P	---
Sc.Lo	0.000
Sc.H,	100.0
ri.Fc	Li.--
ton	2 s
t.ofF	4 s

Connection diagram

2-wire transmitter

Feeding output

Schuhmann GmbH \& Co. KG

Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:

I:	impressed direct current:	$0(4) \ldots 20 \mathrm{~mA}$
connection:	terminal $5-, 6+$	input resistance approx. 10Ω
	Top value measurement: $f=6 \mathrm{~Hz}$ (half sinus)	

Transmitter feeding:
connection:

Output:

2 relay outputs:
max. switching current:
max. switching voltage:
mechanical life:
contact lifetime:
wiring:
change-over contact DC current limit range
5 A
250 V AC
30×10^{6} cycles
10^{5} cycles
see wiring diagram

1 - resistive load
2 - inductive load

Adjustment::

ca. 20 V at 20 mA
terminal 6-, $7+$

The functionality of the device is adjustable via two front side push buttons and the display or via the KALIB-Software. For this you need a PC and the USB2 interface/ USB-Simulator in connection with the KALIB-Software.

Display:

4-digit LC-display with four bars to indicate the respective relay or input channel that is currently being processed or displayed.

input 1

Enviormental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $0 \ldots 55^{\circ} \mathrm{C}$
Insulation voltage: $\quad 4 \mathrm{kV}$ eff. 1 sec .
Input/ output/ auxiliary voltage:
3 kV eff. 1 sec.

Auxiliary power:

Wide range: \quad| | $24 \ldots 250 \mathrm{~V} \mathrm{DC}$ |
| :--- | :--- |
| | $90 \ldots 253 \mathrm{~V} \mathrm{AC}$ |
| | $<3 \mathrm{~W}$ |

Characteristics of transmission:

Linearity error:
$<0,2 \%$ of final value
Temperature error:
< 100 ppm/K

Directive:

EMV directive: 2014/30/EU*
Low voltage directive: 2014/35/EU
*slight deviation is possible during the interference of the HF radiation

Mounting details

Housing for top hat rail:
Protection class: IP 30 housing
IP 20 plug-in terminals
Mounting rail fastening according to:
EN 50022-35 x 7,5 mm
22,5 mm
Weight: $\quad 160 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval:
Connection type:
pluggable
screw terminals
0,2...2,5 mm²
For safety reasons, it is recommended to mount the housings for top-hat rail with a distance of approx. 5 mm between each other

FEATURES

■ Input:
Current 0(4)... 20 mA or
Voltage 0(2)... 10 V

- Output:

2 relays with change over contacts
■ Parameterization, handling and actual value indication by display
■ Integrated transmitter feeding
■ Galvanic 3-way isolation of 4 kV

FUNCTION

The digital DGW 1.00 TW is used for the limit value control of standard inputs.
The parameterization is carried out by front side push-buttons and indicated by display.
The 4-digit actual value indication ist free scalable. Based on the input, the ON and OFF switchpoints (limits) of the two independent relays can be freely definded. This automatically results in a hysteresis.

The ON-delay and the delay release times of the relays are separately adjustable. The status indication of the relays by LEDs.
It has a 2- and a 3-wire transmitter feeding.
At the current input 4... 20 mA or the optional voltage input of $2 \ldots . .10 \mathrm{~V}$ the Live-Zero monitoring is active. At the same time, each relay out of the valid range of $3,9 \ldots 20,8 \mathrm{~mA}(1,9 \ldots 10,4 \mathrm{~V})$ is falling off.

OVERVIEW-MENU

adjustable

 rangedescription
main menu*1
description

Legend: selection next

[^14]changeover parameterizing mode/operating mode:

CHANGE VALUE (select © to change the menu item):
change value:

preset value	change position 1	value changed to „6"	confirm value	position 1 changed	change position 2	changed to „3"	confirm value	value changed to „36"	save and back
		$5 \underline{\underline{6}}$		5		I		$=35$	

define decimal place:

previous value	confirm position 1	position 1 unchanged	change position 2	select comma	confirm comma	"0" selected	confirm value

delete decimal place:

delete positions:

previous value	go to position 2	position 2 changeable	change position 2	change position 2 to „	confirm value	space saved, value: „9"	save and back
$\text { BI } 19$		$\text { E } 1$		85		ーー	

Details of operation:

The displayed position gets changed with the push-button 1. Values such as \square to 9 , minus \square, comma \square and
space \square are possible.
Use the push-button \leftrightarrows to confirm the actual position and go to the next or return to the main menu after changing the last digit. Break-off possible by pushing \leqslant longer.

Optional door installation:
Push red push-button longer than 2 seconds.:
code requested. Enter default code to change
parameters, otherwise display only.

Legend:

(2) Digit on display blinks
\square Display of col
\square space
(1) selection
confirm

DGW 1.00 TW

Connection diagram:

3-wire transmitter

[^15]

Environmental conditions:

Storage temperature: $-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $0 \ldots . .55^{\circ} \mathrm{C}$
Isolation voltage: $\quad 4 \mathrm{kV}$ eff. 1 sec . input-output-auxiliary voltage

Auxiliary power:

Wide range: \quad| $24 \ldots 250 \mathrm{~V} \mathrm{DC}$ | |
| :--- | :--- |
| | $90 . .253 \mathrm{~V} \mathrm{AC}$ |
| | $<3 \mathrm{~W}$ |

Characteristics of transmission:

Linearity error:
$<0,03 \%$ of final value
Temperature error: $<30 \mathrm{ppm} / \mathrm{K}$

Directive:

EMV Directive: 2014/30/EU*
Low Voltage Directive: 2014/35/EU
*minimum devations possible during
HF-radiation influence

Mounting details:

Door installation:

Type of protection:	IP 54 Front
Front frame:	$96 \times 48 \mathrm{~mm}$
Installation depht:	$138,5 \mathrm{~mm}$
Weight:	290 g
Material:	PC/ ABS
Flammability class:	V0 (UL94)
Approval:	CE
Connection:	pluggable

screw clamps
$0,14 \ldots 1,5 \mathrm{~mm}^{2}$

Ordering information:

Type: DGW 1.00 TW wide range door installation
Voltage input optional!
Please specify special signals in clear text:
0 (2)... 10 V

FEATURES

■ 2 Inputs:
Current 0(4)...20mA or
Voltage 0(2)... 10 V

- Output:

2 relays with changeover contacts
■ 2-wire transmitter feeding

- Parameterization and setting via push-button or integrated interface
- Actual value indication via display

3-Way galvanic insulation of 4 kV

FUNCTIONALITY

The digital DGS 2.00 GW is used for limit value monitoring of standardized signals. Parameterization is done via the two front side push-buttons and the 4-digit display or via the integrated interface with the USB2 interface/ USB-Simulator in connection with the KALIB-Software. The parameter files can be stored and easily transferred to other devices. The 4-digit actual value display is freely scalable. In relation to the input, the switchon and switch-off points (limit values) of the two

independent relays can be freely defined. This automatically results in a hysteresis. Hysteresis, pick-up and drop-out delays, the behaviour of the relays in case of sensor break and alarm limits of the relays can be set separately. The relay states are indicated by LEDs on the front side. The DGS 2.00 GW has an additional integrated transmitter feeding.

PRESENTATION NOTES

Symbolism of buttons

	Button	Button press		
	color	short	long (>2 s)	
	black	(1)	D)	
123.4		상))	
(6)\|060	\%			

Symbolism of arrows

\longrightarrow logical transition in the program flow

Symbolism of the display
(2) number flashes on the display
. decimal point representation
\square space

MENU OVERVIEW

\because
Program sections with can be protected by a password from chaning the settings.

CHANGE VALUE (to change, select in the respective menu item with ©):

Change value:

Define decimal point position:

Remove decimal point:

Remove digits:

Legend: select continue switch level home Automatic display change: display channel 1 display channel 2

DISPLAY OF PROCESS VALUE

Description of the main menu

NAVIGATION TO THE STARTING POINT

By using the home function it is possible to jump directly to the start, independent of the current menu window. To do this, press the red and black buttons simultaneously for two seconds. A short HOTE appears on the screen. Previous entries are thereby discarded.

LIMIT VALUES RELAY 1 (EQUIVALENT FOR RELAY 2)

Legend: select continue switch level home

DEFINITION OF THE PARAMETERS FOR INPUT 1

Legend: select continue switch level home Automatic display change: display channel 1 display channel 2

ALARM FUNCTION FOR RELAY 1 (EQUIVALENT FOR RELAY 2)
Description Display Selection/Input
alarm function of the relay
no alarm or sensor monitoring
relay $=$ OFF when exceeding/dropping below the alarm limits
relay $=$ ON when exceeding/dropping below the alarm limits
relay $=0 \mathrm{~N}$ when exceeding/dropping below the alarm limits, maintains the status until locking is released
relay $=$ OFF when exceeding/dropping below the alarm limits, maintains the status until locking is released
upper alarm threshold
lower alarm threshold
end of the Alarm menu

no alarm or sensor monitoring
pping

(page 22)

EXAMPLES

LIMIT VALUE OPERATION MODE

Two current inputs of $4 \ldots .20 \mathrm{~mA}$ should be scaled to a range of $0 \ldots$...100. In limit value mode the upper limit value is 80 and the lower limit value is 30 . The signal source for the relay is calculated by subtraction (process value 2 - process value 1). The effects on relay 1 are shown with an example process value.

DGS settings:	
In.Ph	curr
in.iti	20 mA
incto	4 mA
dEc.P	---.-
Scilo	0.000
Sc.H,	100.0
-1.Fc	Li.--
ri.in	1.2-I

Upper limit value is smaller than lower limit value:

WINDOW OPERATION MODE

Two current inputs of $4 \ldots 20 \mathrm{~mA}$ should be scaled to a range of $0 \ldots 100$. In window mode the upper limit value is 80 and the lower limit value is 30 . Here the hysteresis is set to a value of 10 . The signal source for the relay is calculated by subtraction (process value 2 - process value 1). The effects on relay 1 are shown with an example process value.

DGS settings:	
In.Ph	curr
in.iti	20 mA
inco	4 mA
dEc.P	---.-
Sc.Lo	0.000
Sc.H,	100.0
-1.Fc	LI.こ-
HSSt	10.00
ri.in	1.2-1

EXAMPLES

ALARMS

A current input of $4 . . .20 \mathrm{~mA}$ should be scaled to a range of $0 \ldots 100$. The device is operated in limit value mode with the limits 60 and 30 . Additionally, alarms are now used. For example, the upper alarm limit is defined at 80 and the lower alarm limit at 15 . In the following examples the possible alarm settings are explained.

DGS settings:

In.Ph	curr
in.iti	20 mA
inclo	4 mA
dEc.P	-----
Sc.Lo	0.000
Sc.H,	100.0
-1.Fc	Li.--
ri.on	60.00
ri.or	30.00
RL.H,	80.00
RL.Lo	15.00

Single exceeding or dropping below the alarm limits switches relay permanently ON

Single exceeding or dropping below the alarm limits switches relay permanently OFF
Alarm function: of.RHM
Relay ON Relay OFF

TIME DELAY

A current input of $4 . . .20 \mathrm{~mA}$ should be scaled to a range of $0 \ldots 100$. An upper limit value of 80 and a lower limit value of 30 are defined. Additionally a time delay of 2 seconds for switching on and 4 seconds for switching off is set. The effects on relay 1 shall be shown by an example process value.

DGS settings:

In.Ph	curr
in.itil	20 mA
inilo	4 mA
dEc.P	-----
Sc.Lo	0.000
Sc.if,	100.0
ri.Fc	Li.--
t.on	2 s
toif	4 s

Connection diagram:

2-wire-transmitter

Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input 1:
I: impressed direct current: connection:
U: impressed DC voltage: connection:
Transmitter feeding: connection:

Input 2:
I : impressed direct current: connection:
U: impressed DC voltage: connection:

Output:

0(4)... 20 mA terminal 5 -, $6+$ $0(2) \ldots 10 \mathrm{~V} \quad$ input resistance approx. $1 \mathrm{M} \Omega$ terminal $5-, 8+$ ca. 20 V at 20 mA terminal 6 -, $7+$
input resistance approx. 10Ω

0 (4)... $20 \mathrm{~mA} \quad$ input resistance approx. 10Ω terminal 3-, $4+$ $0(2) . . .10 \mathrm{~V} \quad$ input resistance approx. $100 \mathrm{k} \Omega$ terminal 3-, 4+

2 relay outputs:
max. switching current:
max. switching voltage:
mechanical life:
contact lifetime:
wiring:
change-over contact DC current limit range 5 A
250 V AC
30×10^{6} cycles
10^{5} cycles
see wiring diagram

Adjustment:

The functionality of the device is adjustable via two front side push-buttons and the display or via the KALIB-Software. For this you need a PC and the interface adapter USB2 / USB-Simulator in connection with the KALIB-Software.

Display:

4-digit LC-display with four bars to indicate the respective relay or input channel that is currently being processed or displayed.

Enviormental conditions:	
Storage temperature:	$-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature:	$0 \ldots 55^{\circ} \mathrm{C}$
Insulation voltage:	$4 \mathrm{kV} \mathrm{eff} 1 sec.$.
Input/ output/ auxiliary voltage:	
	3 kV eff. 1 sec.
Input 1 - Input 2:	1 kV eff. 1 sec.
Auxiliary power:	
Wide range:	$24 \ldots 250 \mathrm{~V} \mathrm{DC}$
	$90 \ldots 253 \mathrm{VAC}$
	$<3 \mathrm{~W}$

Characteristic of transmission:

Linearity error:
$<0,2 \%$ of final value
Temperature error: $<100 \mathrm{ppm} / \mathrm{K}$

Directive:

EMV directive: \quad 2014/30/EU*
Low voltage directive $: 2014 / 35 / E U$
*slight deviation is possible during the interference of the HF radiation

Order information:

Monting details

Housing for top hat rail:
Protection class: IP 30 housing IP 20 plug-in terminals
Mounting rail fastening according to:
EN $50022-35 \times 7,5 \mathrm{~mm}$
Width: $\quad 22,5 \mathrm{~mm}$
Weight: $\quad 160 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval: CE
Connection type: pluggable
screw terminals
$0,2 \ldots 2,5 \mathrm{~mm}^{2}$
For safety reasons, it is recommended to mount the housings for top-hat rail with a distance of approx. 5 mm between each other

Type: DGS 2.00 GW wide range Accessories: USB2 / USB-Simulator with KALIB-Software

FEATURES

- 2 Inputs:

Current 0(4)... 20 mA or
Voltage 0(2)... 10 V

- Output:

2 relays with change over contacts

- Parameterization, handling and actual indication by display

■ Integrated transmitter feeding
■ Galvanic 3-way isolation of 4 kV

FUNCTION

The digital DGW 2.00 TW is used for the limit value control of standard inputs.
The parameterization is carried out by front side push-buttons and indicated by display.
The 4-digital actual value indication is free scalable. Based on the input, the ON and OFF switchpoints (limits) of the two independent relays can be freely defined. This automatically results in a hysteresis.

The ON-delay and the delay release times of the relays are seperately adjustable. The status indication of the relays by LEDs.
It has a 2-and a 3-wire transmitter feeding.
At the current input $4 . . .20 \mathrm{~mA}$ or the optional voltage input of $2 \ldots 10 \mathrm{~V}$ the Live-Zero monitoring is active. At the same time, each relay out of the valid range of $3,9 . . .20,8 \mathrm{~mA}(1,9 . . .10,4 \mathrm{~V})$ is falling off.

OVERVIEW-MENU

adjustable description
range

Legend:
selection
next

[^16]JSchuhmann Messtechnik
changeover parameterizing mode/ operating mode:

CHANGE VALUE (select © to change the menu item):
change value:

preset value	change position 1	value changed to „6"	confirm value	position 1 changed	change position 2	changed to „3"	confirm value	value changed to „36"	save and back
		6		5		7		\underline{E}	

define decimal place:

previous value	confirm position 1	position 1 unchanged	change position 2	select comma	confirm comma	"0" selected	confirm value

delete decimal place:

delete positions:

previous value	go to position 2	position 2 changeable	change position 2	change position 2 with to "-"	confirm value	space saved, value: „9"	save and back
을		EE 5				-	

Details of operation:
 Details ofoperation.

The displayed position gets changed with the push-button \uparrow. Values such as (0) to $(9$, minus \square, comma \square and space \square are possible.
Use the push-button to confirm the actual position and go to the next or return to the main menu after changing the last digit. Break-off possible by pushing longer.

Optional door installation:
Push red push-button longer than 2 seconds:
code requested. Enter default code to change parameters, otherwise display only.

Legend:

(2) Digit on display blinks.
\square Display of comma.

- space
(1) selectionconfirm

DGW 2.00 TW

Connection diagram:

3-wire transmitter

[^17]
Input:

$\begin{array}{lll}\text { I: Ioad-independent DC current: } & 0(4) \ldots 20 \mathrm{~mA} & \text { input resistance approx. } 50 \Omega \\ & \text { connection input 1: } & \text { terminal } 3-, 4+ \\ & \\ \text { connection input 2: } & \text { terminal } 6-, 7+ & \end{array}$

optional/ alternatively:

U: load independent DC voltage:	$0(2) \ldots 10 \mathrm{~V}$	input resistance approx $100 \mathrm{k} \Omega$
transmitter feeding:	approx. 20 V at 20 mA	

Output:

Adjustment:

The functions are adjusted by 2 front side push-buttons and display (see Seite 03-24 und 03-25).
Display:
4-digit LC-display, indication of relay status by 2 LEDs
LED relay 1 red, active relay 1 tightend
LED relay 2 red, active relay 2 tightend
relay

Environmental conditions:

$\begin{array}{ll}\text { Storage temperature: } & -40 \ldots+70^{\circ} \mathrm{C} \\ \text { Operating temperature: } & 0 \ldots 55^{\circ} \mathrm{C} \\ \text { Isolation voltage: } & 4 \mathrm{kV} \text { eff. } 1 \mathrm{sec} .\end{array}$ input-output-auxiliary power

Auxiliary power:

Wide range: \quad| | $24 \ldots 250 \mathrm{~V} \mathrm{DC}$ |
| :--- | :--- |
| | $90 \ldots 253 \mathrm{~V} \mathrm{AC}$ |
| | $<3 \mathrm{~W}$ |

Characteristics of transmission:

Linearity error:
<0,03 \%
of final value
Temperature error: $<30 \mathrm{ppm} / \mathrm{K}$

Directive:

EMV Directive: 2014/30/EU*
Low Voltage Directive: 2014/35/EU
*minimum devations possible during
HF-radiation influencee

Mounting details:

Door installation:
Type of protection: IP 54 Front
Front frame: $\quad 96 \times 48 \mathrm{~mm}$
Installation depht: $\quad 138,5 \mathrm{~mm}$
Weight: $\quad 290 \mathrm{~g}$
Material: $\quad \mathrm{PC} / \mathrm{ABS}$
Flammability class: V0 (UL94)
Approval: CE
Connection: pluggable screw clamps
$0,14 \ldots 1,5 \mathrm{~mm}^{2}$

Ordering information:

Type: DGW 2.00 TW wide range door installation
Voltage input optional!
Please specify special signals in clear text:
0(2)... 10 V

FEATURES

■ Input:
PT 100, PT 500, PT 1000, NI 1000
and KTY

- Output:

2 relays with changeover contacts

- Parameterization and adjustment
by push-button or integrated interface
- Current value indication via display
- 3-Way galvanic isolation of 4 kV

Further - also customer-specific - sensors can be loaded via the KALIB-Software. In relation to the input, the switch-on and switch-off points (limit values) of the two independent relays can be freely defined. This automatically results in a hysteresis. Hysteresis, pick-up and drop-out delays, the behaviour of the relays in case of sensor break and the alarm limits can be set separately. The relay states are indicated by LEDs on the front side.

PRESENTATION NOTES

Symbolism of buttons

Symbolism of arrows
\longrightarrow logical transition in the program flow

Symbolism of the display
(2) number flashes on the display
. decimal point representation
\square space

MENU OVERVIEW

Program sections with can be protected
from changing by setting a passoword.

CHANGE VALUE (to change, select in the respective menu item with ©):

Change value:

Define decimal point position:

Remove decimal point:

Remove digits:

DISPLAY OF PROCESS VALUE
Description of the main menu

NAVIGATION TO THE STARTING POINT

Home function

Using the home function it is possible to jump directly to the start, independent of the current menu window. To do this, press the red and black buttons simultaneously for two seconds. A short HDITE appears on the screen. Previous entries are thereby discarded.

LIMIT VALUES RELAY 1 （ EQUIVALENT FOR RELAY 2 ）

Legend：	select （1）	continue	switch level （D）	$\text { home } \bigcirc$	Automatic display change：	display channel 1	display channel 2 ローロ
03－37							

parameterization menu input 1
selection of the temperature sensor
platinum measuring resistors
nickel measuring resistors
election of the wire connection
temperature offset in ${ }^{\circ} \mathrm{C}$
input signal damping

DEFINITION OF PARAMETERS FOR RELAY 1 (EQUIVALENT FOR RELAY 2)
Description Display Selection/ Input

Legend: select continue switch level home Automatic display change: display channel 1 display channel 2

ALARM FUNCTION FOR RELAY 1 (EQUIVALENT FOR RELAY 2)

(page 38)
Legend: select continue switch level home Automatic display change: display channel 1 display channel 2

EXAMPLES

LIMIT VALUE OPERATION MODE

A temperature measurement with a PT500 element will be performed in 3-wire operation. The upper limit value is $80^{\circ} \mathrm{C}$ and the lower limit value is $30^{\circ} \mathrm{C}$. The effects on relay 1 are shown with an example process value.

DGS settings:

SEnS	PLO. 5
LinE	$3 . L$ In
ri.Fc	Li.-

Upper limit value is below lower limit value:

WINDOW OPERATION MODE

A temperature measurement with a PT500 element shall be performed in 3-wire operation. The upper limit value is $80^{\circ} \mathrm{C}$ and the lower limit value is $30^{\circ} \mathrm{C}$. The hysteresis is set here to a value of $10^{\circ} \mathrm{C}$. The effects on relay 1 are shown with an example process value

DGS settings:

SERS	PLO.S
LInE	S.Lin
FI.Fc	Li.Z
HSSE	10.00

EXAMPLES

ALARMS

A temperature measurement with a PT500 element will be performed in 3-wire operation. Thereby the device is operated in limit value mode with the limits $60^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. Additionally, alarms are now used. The upper alarm limit is defined at $80^{\circ} \mathrm{C}$ and the lower alarm limit at $15^{\circ} \mathrm{C}$. In the following examples the possible alarm settings are explained.

DGS settings:

$55_{n} 5$	Ptob. 5
Link	3.1 .10
ri.Fc	Li.--
ri.on	60.00
ri.or	30.00
BL.H,	80.00
RL.Lo	15.00

Single exceeding or dropping below the alarm limits switches relay permanently ON

Single exceeding or dropping below the alarm limits switches relay permanently OFF

TIME DELAY

A temperature measurement with a PT500 element will be performed in 3-wire operation. Thereby the device is operated in limit value mode with the limits $80^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. Additionally a time delay of 2 seconds for switching on and 4 seconds for switching off is set. The effects on relay 1 shall be shown by means of an example process value.

DGS settings:

SEnS	PCO. 5
LInE	3.14
ri.Fc	Li.--
t.on	2 s
L.oFr	4 s

DGS 2.01 GW

Connetction diagram:

Input Sensor:
PT, KTY, NI, resistance, potentiometer

4-Wire

Thermocouple:
$-7 \longrightarrow$
$+6 \longrightarrow$

Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:
Adjustable via push-button and interface
Sensor type Measuring range
PT $100 / 500 / 1000-199 \ldots+849^{\circ} \mathrm{C}$

NI 100/500/1000

$$
-58 \ldots+208^{\circ} \mathrm{C}
$$

Adjustable only via interface:
KTY 10/11/13/81/82/83 -58... $150^{\circ} \mathrm{C}$
KT 100/110/130/210/230 $-58 \ldots . .150^{\circ} \mathrm{C}$
Potentiometer (2-wire) User $0 . . .500 \Omega / 5 \mathrm{k} \Omega$

Further temperature sensor curves can be created via the KALIB-Software by the user.
Output:

Adjustment:

The functionality of the device is adjustable via two front side push buttons and the display or via the KALIB-Software. For this you need a PC and the interface adapter USB2/ USB simulator in connection with KALIB-Software.

Display:

4-digit LC display with four bars to indicate the respective relay or input channel that is currently being processed or displayed.

Enviormental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$ Operating temperature: $0 . . .55^{\circ} \mathrm{C}$
Insulation voltage: $\quad 4 \mathrm{kV}$ eff. 1 sec .
Input-output auxiliary voltage: $3 k V$ eff. 1 sec .

Auxiliary power:

Wide range:
24... 250 V DC 90... 253 V AC

$$
<3 \mathrm{~W}
$$

Characteristic of transmission:

Linearity error: $\quad<0.2 \%$ of final value
Temperature error: $<100 \mathrm{ppm} / \mathrm{K}$

Directive:

EMC Directive:	$2014 / 30 / E U^{*}$
Low voltage directive:	$2014 / 35 / E U$

*slight deviations are possible during the interference of the HF radiation

Mounting details:

Housing for top hat rail:
Protection class:
IP 30 housing
IP 20 plug-in terminals
Mounting rail fastening according to:
EN 50022-35 x 7,5 mm
Width: $\quad 22,5 \mathrm{~mm}$
Mass: $\quad 160 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval: CE
Connection type: pluggable
screw terminals
$0,2 \ldots 2,5 \mathrm{~mm}^{2}$

For safety reasons, it is recommended to mount the housings for top-hat rail with a distance of approx. 5 mm between each other.

Order information:
 Order information:

Type: DGS 2.01 GW wide range
Accessories: USB2 / USB-Simulator with KALIB-Software

FEATURES

■ Input:
PT 100
optional PT 500/ PT 1000

- Output:

2 relays with change over contacts
Relay 1: limit value function
Relay 2: limit value or alarm function

■ Parameterization, operation and actual value over display

■ Galvanic 4-way isolation of 4 kV

FUNCTION

The DGW 2.01 TW has an input for PT 100 respectively optional PT 500 oder PT 1000. It has two relay outputs.
The parameterization is carried out by front side push-buttons and indicated by display.
The 4-digital actual value indication is free scalable. Based on the input, the ON and OFF switchpoints (limits) of the two independent relays can be freely defined. This automatically results in a hysteresis.

The ON-delay and the delay release time of the relays are seperately adjustable. The relay status is indicated by LEDs.
An alarm function can be realized with the relay 2 , in which the pane, via the tresholds for on and off, can be set. Is has a simultaneous analog voltage and current output.
\square

OVERVIEW－MENU

error message：
$F-24$ sensor break
BL alarmmessage BL．of unlocking alarm
description
range

description
available
display

Legend：
selection
changeover parameterizing mode/ operating mode:

CHANGE VALUE (select © to change the menu item):
change value:

define decimal place:

delete decimal place:

delete positions:

DGW 2.01 TW

Connection diagram:

Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:

PT 100, 2-/3-wire range-100... $500^{\circ} \mathrm{C}$
optional PT 500 / PT 1000
Output:

Environmental conditions::
 $\begin{array}{ll}\text { Storage temperature: } & -40 \ldots+70^{\circ} \mathrm{C} \\ \text { Operating temperature: } & 0 . . .55^{\circ} \mathrm{C} \\ \text { Isolation voltage: } & 4 \mathrm{kV} \text { eff. } 1 \text { sec. } \\ & \text { input-output-auxiliary voltag }\end{array}$ input-output-auxiliary voltage

Auxiliary power:

Wide range: \quad| | $24 \ldots 250 \mathrm{~V} \mathrm{DC}$ |
| :--- | :--- |
| | $90 \ldots 253 \mathrm{~V} \mathrm{AC}$ |
| | $<3 \mathrm{~W}$ |

Characteristics of transmission::

Linearity error:	$<0,15 \%$ of final value
Temperature error:	$<30 \mathrm{ppm} / \mathrm{K}$

Directive:

EMV Directive: 2014/30/EU*
Low Voltage Directive: 2014/35/EU

* minimum deviations possible during

HF-radiation influence

Mounting details:

Door installation:

Type of protection:	IP 54 Front
Front frame:	$96 \times 48 \mathrm{~mm}$
Installation depth:	$138,5 \mathrm{~mm}$
Weight:	290 g
Material:	PC/ ABS
Flammability class::	V0 (UL94)
Approval:	CE
Connection:	pluggable
	screw clamps
	$0,14.15 \mathrm{~mm}^{2}$

$0,14 \ldots 1,5 \mathrm{~mm}^{2}$

Ordering information:

Type: DGW 2.01 TW wide range door installation
Please specify signals in clear text:
e.g. PT 100, 0... 20 mA .

FEATURES
 ■ Input:
 PT100 temperature measurement
 ■ Output: 2x transistor
 ■ Indication of contact state by LED
 - Additional functions:
 Hysteresis, ON/ OFF-delay, window, tendency, inverse function, alarm
 - Parameterization without auxiliary power via PC-interface
 ■ Galvanic 3-way isolation of $2,5 \mathrm{kV}$
 ■ Low internal consumption

FUNCTION

The GSP 2.01 SDC is used for measurement of temperature and control. All common PT100 sensors can be connected. The limit switch is being parameterized by the USB2 adapter in connection with KALIBSoftware. For the output 2 potential free transistor switches are available which are equipped with limit values, hysteresis, ON/ OFF-delay, window, alarm, inverse function, tendency and sensor control each.

The temperature to be controlled is converted by the PT100 temperature sensor into a non-linear voltage signal. After internal preparation and linearization the value is compared the internally prepared limit value and then the transistor output will be energized.

Input:

PT100, 2-wire:	$-50^{\circ} \mathrm{C} \ldots+550^{\circ} \mathrm{C}$	Measuring current 2 mA
connection:	terminal 3,4	

Offset temperature/ line fault adjustable.

Output:

2 transistor outputs:
Load: max. 30 V AC/ DC, max. $100 \mathrm{~mA} \mathrm{AC/DC}$
connection K1: terminal 7,8
connection K2: terminal 5, 6
Module for heavy loads:
Relay interface module, 2 relays with 6 A, 250 V
Type: RE 2.00 S

Adjustment:

Measuring ranges, switching points and parameterization are adjustable in parameter data by KALIB-Software. For this you need a PC as well as the interface adapter USB2/ USB-Simulator with

KALIB-Software.

Parameterization for each channel:

Limit value (+inverting):
Limit value window (+inverting): Hysteresis:
ON/ OFF-delay:
Tendency value rising,
falling, both (+inverting):
Functions:

$$
\begin{array}{ll}
-40,0^{\circ} \mathrm{C} \ldots+550,0^{\circ} \mathrm{C} & \begin{array}{l}
\text { adjustable in } 0,1^{\circ} \mathrm{C} \text { steps } \\
-40,0^{\circ} \mathrm{C} \ldots+550,0^{\circ} \mathrm{C}
\end{array} \\
\text { adjustable in } 0,1^{\circ} \mathrm{C} \text { steps } \\
+1,0^{\circ} \mathrm{C} \ldots+299,9^{\circ} \mathrm{C} & \text { adjustable in } 0,1^{\circ} \mathrm{C} \text { steps } \\
0,0 \ldots 99,9 \mathrm{sec} . & \text { adjustable in } 0,1 \mathrm{sec} \text {. steps } \\
+1,0^{\circ} \mathrm{C} \ldots+500,0^{\circ} \mathrm{C} \text { in } 0,1 \ldots 3240,0 \text { sec. } \\
\text { adjustable in } 0,1^{\circ} \mathrm{C} / 0,1 \text { sec. steps } \\
\text { limit value, limit value range, tendency, } \\
\text { inverse function, alarm function, start state, start time }
\end{array}
$$

Display:

LED status:	green, active green, flashing	input signals are in standard range, device ready for use input out of predetermined limits or exceeding of measuring range
LED K1:	green, active	K1 closed
LED K2:	green, active	K2 closed

Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
*minimum deviations possible during

Housing for top hat ral
Type of protection: IP 20
Mounting rail fixed according to
$6,2 \mathrm{~mm}$
52 g
olyamide PA
V0 (UL 94)
screw clamps
$0,14 \ldots 2,5 \mathrm{~mm}^{2}$
Please check parameterization before initial operation!

FEATURES
 ■ Input:
 KTY temperature measurement
 ■ Output: 2x transistor
 ■ Indication of contact state by LED
 ■ Additional functions:
 Hysteresis, ON/ OFF-delay, window, tendency, inverse function, alarm
 - Parameterization without auxiliary power via PC-interface
 ■ Galvanic 3-way isolation of $2,5 \mathrm{kV}$
 ■ Low internal consumption

FUNCTION

The GSP 2.81 SDC is used for measurement of temperature and control. All common kty sensors can be connected. The limit switch is being parameterized by the USB2 adapter in connection with KALIBSoftware. For the output 2 potential free transistor switches are available which are equipped with limit values, hysteresis, ON/ OFF-delay, window, alarm, inverse function, tendency and sensor control each.

The temperature to be controlled is converted by the KTY temperature sensor into a non-linear voltage signal. After internal preparation and linearization the value is compared the internally prepared limit value and then the transistor output will be energized.

Connection diagram:

[^18]| Input: | | | |
| :---: | :---: | :---: | :---: |
| KTY Sensor | Adjustment | Measuring range | Measuring current |
| KT 100, 110, 130 | $2 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ | $-50^{\circ} \mathrm{C} . . .+150^{\circ} \mathrm{C}$ | 1 mA |
| KT 210, 230 | $1 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ | $-50^{\circ} \mathrm{C} \ldots+150^{\circ} \mathrm{C}$ | 1 mA |
| KTY 10-x, 11-x, 13-x | $2 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ | $-50^{\circ} \mathrm{C} . . .+150^{\circ} \mathrm{C}$ | 1 mA |
| KTY 21-x, 23-x | $1 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ | $-50^{\circ} \mathrm{C} \ldots+150^{\circ} \mathrm{C}$ | 1 mA |
| KTY 16-6, 19-x | $2 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ | $-50^{\circ} \mathrm{C} . . .+150^{\circ} \mathrm{C}$ | 1 mA |
| KTY 81-x | $1 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ | $-50^{\circ} \mathrm{C} . . .+150^{\circ} \mathrm{C}$ | 1 mA |
| KTY 82-x | $1 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ | $-50^{\circ} \mathrm{C} . . .+150^{\circ} \mathrm{C}$ | 1 mA |
| KTY 83-x | $1 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$ | $-50^{\circ} \mathrm{C} . . .+150^{\circ} \mathrm{C}$ | 1 mA |
| KTY 84-x | $1 \mathrm{k} \Omega$ at $100^{\circ} \mathrm{C}$ | $-50^{\circ} \mathrm{C} \ldots+150^{\circ} \mathrm{C}$ | 1 mA |
| connection: | | | |

Output:

2 transistor outputs:
Load:
connection K1:
connection K2:
Module for heavy loads:
max. 30 V AC/ DC, max. $100 \mathrm{~mA} \mathrm{AC/DC}$
terminal 7, 8
terminal 5, 6
Relay interface module, 2 relays with $6 \mathrm{~A}, 250 \mathrm{~V}$ Type: RE 2.00 S

Adjustment:

Measuring ranges, switching points and parameterization are adjustable in parameter data by KALIB-Software. You need a PC and the interface adapter USB2 with KALIB-Software. Parameterization for each channel:
Limit value (+inverting):
Limit value window (+inverting):
Hysteresis:
ON/ OFF-delay:
Tendency value rising,
falling, both (+inverting):
Functions:

$$
-50,0^{\circ} \mathrm{C} \ldots+150,0^{\circ} \mathrm{C} \quad \text { adjustable in } 0,1^{\circ} \mathrm{C} \text { steps }
$$

$-50,0^{\circ} \mathrm{C} \ldots+150,0^{\circ} \mathrm{C} \quad$ adjustable in $0,1^{\circ} \mathrm{C}$ steps
$+1,0^{\circ} \mathrm{C} \ldots+99,9^{\circ} \mathrm{C} \quad$ adjustable in $0,1^{\circ} \mathrm{C}$ steps
$0,0 \ldots 999,9$ sec. adjustable in $0,1 \mathrm{sec}$. steps
$+0,1^{\circ} \mathrm{C} \ldots+150,0^{\circ} \mathrm{C}$ in $0,1 \ldots 3240,0$ sec. $\left(0,1^{\circ} \mathrm{C} / 0,1\right.$ sec. steps $)$
limit value, limit value range, tendency,
inverse function, alarm function, start state, start time
Display:

LED status:	green, active green, flashing	input signals are in standard range, device ready for use input out of predetermined limits or exceeding of measuring range
LED K1:	green, active green, active	K1 closed
K2 closed		

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $0 . . .55^{\circ} \mathrm{C}$
Isolation voltage:
2,5 kV eff. 1 sec. input-output $2,5 \mathrm{kV}$ eff. 1 sec . auxiliary voltage

Auxiliary power:

24 V DC:
20... 30 V DC
$<1,5 \mathrm{~W}$
Influence of
auxiliary power: $\quad<0,1 \%$
Characteristics of transmission:

| Resolution: | 10 bit |
| :--- | :--- | :--- |
| Linearity error: | $<0,5 \%$ of final value |
| Temperature error: | $<30 \mathrm{ppm} / \mathrm{K}$ |
| Response time: | $<10 \mathrm{msec}$. |

Directive:

EMC Directive:	$2014 / 30 / E U^{*}$
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to

	EN 50022-35 $\times 6,2 \mathrm{~mm}$
Width:	$6,2 \mathrm{~mm}$
Weight:	52 g
Material:	Polyamide PA
Flammability class:	V0 (UL 94)
Approval:	CE
Connection:	screw clamps
	$0,14 \ldots 2,5 \mathrm{~mm}^{2}$

Please check parameterization before initial operation!

Ordering information:	Type:GSP 2.81 SDC $24 V D C$ Accessories: USB2/ USB-Simulator with KALIB-Software, manual

FEATURES

■ Input:
2x feeding of electrodes
Current max. 1,5 mA
Voltage max. 10 V AC
■ Output:
2 relay (changer, invertible)

- Function selection via DIP-switch

■ Adjustment of conductivity by trimmer 0,5... $50 \mathrm{k} \Omega$

- Parameterization without

 auxiliary power via PC-interface: - hysteresis times■ Galvanic 4-way isolation

FUNCTION

The Electrode Relay ER 2.00 MW is a limit switch that is used for minimum, maximum or level monitoring, the two-point control of tanks, silos and containers with electrically conductive liquids.
Internal an alternating voltage square wave signal is being generated. This signal is compared with the conductivity value adjusted via the front side trimmer and evaluated accordingly.
By using an alternating voltage at the electrodes corrosion of the probe rods and electrolytic decomposition of the medium can be avoided in almost all cases of the application.

Whether the relays should respond when the level rises or falls can be set via DIP-switch S1 and S2. The relay states are signaled by the front LEDs.
Furthermore, DIP-switch S3 can be used to select the switching function „between electrode MIN and MAX" (relay switching together) as well as „separate min. and max. function" (relay switching separately, two independent switching points).
The hysteresis times of the relays can be independently parameterized with the USB2 interface adapter or USB-Simulator in conjunction with the KALIBSoftware and switched over with DIP-switch S4.

Connection diagram:

[^19]
Input:

Minimal, maximal and ground electrode

maximal electrode current:	$I_{\max }=1,5 \mathrm{~mA}$
maximal electrode voltage:	$U_{0}=10 \mathrm{VAC}$
Conductivity adjustment:	$0,5 . .50 \mathrm{k} \Omega$
connection:	electrode MIN 3/5, electrode MAX 4/6

Output:

Relay output:
2 changer
max. switching current:
max. switching voltage: mechanical life cycle: electrical life cycle: connection:

6 A
250 V AC
5×10^{6} cycles
10^{5} cycles
relay A - common 9, normally closed 8, normally open 7 relay B - common 12 , normally closed 10 , normally open 11

Adjustment:

DIP-switch for function selection:

	1			
	2			
2				
3				
	Switch	Function	ON	OFF
1	Relay A	inverted	not inverted	
on off	2	Relay B	inverted	not inverted
	3	switch. function	separate min. and max. function	betw. electrode MIN and MAX
	4^{*}	hysteresis time	hysteresis time 2	hysteresis time 1

*Factory setting:
Hysteresis time 1 für both relays 3 sec . / hysteresis time 2 für both relays 20 sec .
The hysteresis time can be parameterized by KALIB-Software - $0 . . .255 \mathrm{sec}$. For this you need a PC as well as the interface adapter USB2/ USB-Simulator with KALIB-Software.
Conductivity adjustment: setting the conductivity value as comparison value for the electrodes. 20-turn potentiometer: 1 turn equals approx. $2,5 \mathrm{k} \Omega$.
Display:

LED power	green, active	device active, no error
LED error	red, active	at switching function 1: R of electrode MIN $>$ electrode MAX
LED Relay A / B	red, active	Relay A / B tightened

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ}$
Operating temperature: $0 . . .55^{\circ} \mathrm{C}$
Isolation voltage: $\quad 4 \mathrm{kV}$ eff. 1 sec . input/ output/ auxiliary power

Auxiliary power:

Wide range: | | $24 \ldots 250 \mathrm{~V} \mathrm{DC}$ |
| :--- | :--- |
| | $90 \ldots 253 \mathrm{~V} \mathrm{AC}$ |
| | $<3 \mathrm{~W}$ |
| Influence of Aux. power: | $<0,1 \%$ |

Characteristics of transmission:
Setting time: approx. 5 sec .

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	2014/35/EU

For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.

Ordering information:	Type: Accessories:
	ER 2.00 MW USB2/ USB-Simulator with KALIB-Software

FEATURES

■ Input:
Current 0(4)... 20 mA or
Voltage 0(2)... 10 V
■ Output:
2 relays (changer)
■ Adjustment of limit value by front side push-button
■ Indication of

- contact state by LED
- actual value by bargraph

■ Additional functions:
Hysteresis, window, ON/ OFF-delay, inverse function
■ Galvanic 3-way isolation of 4 kV

FUNCTION

The Limit Switch GS 2.00 GW is used for the control of limit values of standardized current or voltage signals.
Due to the 2 relays at the output with one potential free change-over contact each two switching functions can be realized. The switching status of the erected relay will be indicated by LED display.

The switching point can be adjusted by the front side push-button the effective direction of the relay by the slide switch on the side.
The application range is e.g. threshold switch, supervisory relay, pump control of containers, control of final signals of positioning elements etc.

GS 2.00 GW

Connection diagram:

Schuhmann GmbH \& Co. KG
 Römerstraße 2
 D-74363 Güglingen
 Tel. +4971355056
 E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:

I: load-independent $D C$ current	$0(4) \ldots .20 \mathrm{~mA}$	input resistance approx. 50Ω
connection:	terminal $5-, 6+$	
U: Ioad-independent DC voltage	$0(2) \ldots .10 \mathrm{~V}$	input resistance approx. $100 \mathrm{k} \Omega$
\quad connection:	terminal $7-, 8+$	

Output:

2 relay outputs: changer
max. switching current/ voltage: $8 \mathrm{~A} / 250 \mathrm{VAC}$
mech./ contact life cycle:
30×10^{6} cycles $/ 10^{5}$ cycles
connection:
see connection diagram

Adjustment:

Select function with DIP switch on the side (S1-1 to S1-8):

䓂馬\sim	Switch	Adjustment	Function
	front side A	0... 99 \%	limit value adjustment A
	front side B	0... 99%	limit value adjustment B
	S1-1	OFF	input current
	S1-1	ON	input voltage
	S1-2	OFF	input $0 \ldots . .20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$
	S1-2	ON	input $4 . .20 \mathrm{~mA} / 2 . . .10 \mathrm{~V}$
$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\text { ® }}{\text { c }}}$	S1-3	OFF	relay A is not inverted
	S1-3	ON	relay A is inverted
	S1-4	OFF	delay relay A ON/ OFF, $0,5 \mathrm{sec}$.
	S1-4	ON	delay relay A ON/ OFF, 5 sec .
$\infty$$\stackrel{\infty}{\star}$$\stackrel{\rightharpoonup}{\approx}$$\approx$	S1-5	OFF	relay B is not inverted
	S1-5	ON	relay B is inverted
	S1-6	OFF	delay relay B ON/ OFF, $0,5 \mathrm{sec}$.
	S1-6	ON	delay relay B ON/ OFF, 5 sec.
	S1-7	OFF	switching hysteresis 0,5\%
	S1-7	ON	switching hysteresis 5 \%
	S1-8	OFF	separate switching function for limit value
	S1-8	ON	common switching function A, B, switching between A [\%] and B [\%] (hysteresis)

Display:
LED Status
green, active
green, flashing
red, active
input signal within range, ready for use limit exceeded
LED Relay A
LED Relay B
Actual value
indication

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $0 \ldots . .55^{\circ} \mathrm{C}$
Isolation voltage:
4 kV eff. 1 sec . input-output
4 kV eff. 1 sec. auxiliary voltage

Auxiliary power:

Wide range:	$24 \ldots 250 \mathrm{~V} \mathrm{DC}$ Influence of auxiliary power:

Characteristics of transmission:

Resolution:	10 bit
Linearity error:	$<0,1 \%$ of final value
Temperature error:	$<30 \mathrm{ppm} / \mathrm{K}$

Directive:

EMC Directive:	$2014 / 30 / E U^{*}$
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20 housing IP 10 screw clamps
Mounting rail fixed according to
EN 50022-35 x 6,2 mm
Width: $\quad 22,5 \mathrm{~mm}$
Weight: $\quad 160 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval:
Connection:
CE
screw clamps
$0,2 \ldots 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a
distance of approx. 5 mm to each other.
Ordering information: Type: GS 2.00 GW wide range

FEATURES

■ Input:
Current 0(4)... 20 mA or
Voltage 0(2)... 10 V
■ Output:
2 relays (changer)

- Integrated transmitter feeding

■ Adjustment of limit value by front side push-button

- Indication of - contact state by LED
- actual value by bargraph

■ Additional functions: hysteresis, window, ON/ OFF-delay, inverse function

- Galvanic 3-way isolation of 4 kV

Because of the integrated transmitter feeding, 2- or 3-wire transmitters will be fed.
The application range is e.g. threshold switch, supervisory relay, pump control of containers, control of final signals of positioning elements etc.

GS 2.10 GW

Connection diagram:

Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:

I: load-independent DC current connection:	0(4)...20 mA terminal $5-, 6+\quad$ input resistance approx. 50Ω
U: load-independent DC voltage connection:	$0(2) \ldots 10 \mathrm{~V}$ terminal $7-, 8+\quad$ input resistance approx. $100 \mathrm{k} \Omega$
transmitter feeding: connection:	approx. $20 \ldots 24 \mathrm{~V}$, max. $20 \mathrm{~mA} / 22 \mathrm{~V}$ see connection diagram
Output:	
2 relay outputs: max. switching current/ voltage: mech./ contact life cycle: connection:	changer 8 A/ 250 V AC 30×10^{6} cycles $/ 10^{5}$ cycles see connection diagram

Adjustment:

Select function with DIP switch on the side (S1-1 to S1-8):

츠을n	Switch	Adjustment	Function
	front side A	0... 99 \%	Limit value adjustment A
	front side B	0... 99%	Limit value adjustment B
\#	S1-1	OFF	Input current
	S1-1	ON	Input voltage
	S1-2	OFF	Input 0... $20 \mathrm{~mA} / 0 \ldots . .10 \mathrm{~V}$
	S1-2	ON	Input 4... $20 \mathrm{~mA} / 2 . . .10 \mathrm{~V}$
$\stackrel{\text { ® }}{\text { ¢ }}$	S1-3	OFF	Relay A is not inverted
	S1-3	ON	Relay A is inverted
	S1-4	OFF	Delay relay A ON/ OFF, $0,5 \mathrm{sec}$.
	S1-4	ON	Delay relay A ON/ OFF, 5 sec.
$\begin{aligned} & \infty \\ & \frac{\infty}{\approx} \\ & \stackrel{\rightharpoonup}{\approx} \end{aligned}$	S1-5	OFF	Relay B is not inverted
	S1-5	ON	Relay B is inverted
	S1-6	OFF	Delay relay B ON/ OFF, $0,5 \mathrm{sec}$.
	S1-6	ON	Delay relay B ON/ OFF, 5 sec.
	S1-7	OFF	Switching hysteresis 0,5\%
	S1-7	ON	Switching hysteresis 5 \%
	S1-8	OFF	Separate switching function for limit value
	S1-8	ON	Common switching function A, B, switching between A [\%] and B [\%] (hysteresis)

Display:

LED Status	green, active green, flashing	input signal within range, ready for use limit exceeded
LED Relay A	red, active	relay A tightened
LED Relay B	red, active	relay B tightened
Act. val. indic.	front side bargraph up to 100% green, from 100% red	

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$ Operating temperature: $0 . . .55^{\circ} \mathrm{C}$
Isolation voltage:
4 kV eff. 1 sec. input-output 4 kV eff. 1 sec . auxiliary voltage

Auxiliary power:

Wide range:	$24 \ldots 250 \mathrm{~V} \mathrm{DC}$ $90 \ldots .253 \mathrm{~V} \mathrm{AC}$ Influence of auxiliary power:

\section*{Characteristics of transmission:
 | Resolution: | 10 bit |
| :--- | :--- |
| Linearity error: | $<0,1 \%$ of final value |
| Temperature error: | $<30 \mathrm{ppm} / \mathrm{K}$ |
 \[

<30 \mathrm{ppm} / \mathrm{K}
\]}

Directive:

EMC Directive:	$2014 / 30 / E U^{*}$
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20 housing IP 10 screw clamps
Mounting rail fixed according to
EN 50022-35 x 6,2 mm
Width: $\quad 22,5 \mathrm{~mm}$
Weight: $\quad 160 \mathrm{~g}$
Material: Polyamide PA
Flammability class: V0 (UL 94)
Approval:
Connection:
CE
screw clamps
$0,2 \ldots 2,5 \mathrm{~mm}^{2}$
For safety reasons we recommend to mount the housing for top hat rail with a
distance of approx. 5 mm to each other.

Ordering information:
 Type:
 GS 2.10 GW
 wide range

FEATURES

■ Input: 0(4)... $20 \mathrm{~mA} / 0(2) . . .10 \mathrm{~V}$
■ Output: 2x transistor
■ Indication of contact state by LED

- Additional functions: Hysteresis, ON/ OFF-delay, window, tendency, inverse function, alarm
- Parameterization without auxiliary power via PC-interface
■ Galvanic 3-way isolation of $2,5 \mathrm{kV}$
■ Low internal consumption

FUNCTION

The GSP 2.00 SDC is used for the control of limit values of standardized signals. The limit switch is being parameterized by the USB2 adapter in connection with KALIB-Software. For the output 2 potential free transistor switches are available which are equipped with limit values, hysteresis, ON/ OFFdelay, window, alarm, inverse function, tendency and sensor control each. The devices can be applied as threshold switch and supervisory relay to monitor temperature, pressure, dry runtime, motor protection, speed, etc.

The values to be controlled can exist as DC signal or $D C$ voltage signal. After internal preparation the input signal will be compared with the digital adjusted limit value and in case of exceeding or falling off the transistor output will be energized.

Input:

I: Ioad-independent DC current:	$0(4) \ldots 20 \mathrm{~mA}$ connection:	input resistance approx. 100Ω
U: Ioad-independent DC voltage:	$0(2) \ldots 10 \mathrm{~V}$	
connection:	terminal $4-, 3+$	input resistance approx. $100 \mathrm{k} \Omega$

Output:

Connection diagram:

[^20]| 2 transistor outputs: | |
| :--- | :--- |
| Load: max. $30 \mathrm{~V} \mathrm{AC/} \mathrm{DC}, \mathrm{max} .100 \mathrm{~mA} \mathrm{AC/DC}$
 connection K1: terminal 7,8
 connection K2: terminal 5, 6
 Module for heavy loads: Relay interface module, 2 relays with 6 A, 250 V
 Type: RE 2.00 S | |
| | |

Adjustment:

Measuring ranges, switching points and parameterization are adjustable in parameter data by KALIB-Software. For this you need a PC as well as the interface adapter USB2/ USB-Simulator with KALIB-Software.

Parameterization for each channel:
Limit value adjustment:
Hysteresis:
ON/ OFF-delay:
Functions:
0,0...110,0 \% adjustable in 0,1 \% steps 0,1...90,0 \% adjustable in 0,1 \% steps
$0,0 \ldots 999,0$ sec. adjustable in 0,1 sec. steps
limit value, limit value range, tendency,
inverse function, alarm function, start state, start time

Display:

LED status:	green, active green, flashing	input signals are in standard range, device ready for use input out of predetermined limits or exceeding of measuring range
LED K1:	green, active LED K2:	K1 closed
	green, active	K2 closed

FEATURES

■ Input: 0(4)... $20 \mathrm{~mA} / 0(2) . . .10 \mathrm{~V}$
■ Output:
3x transistor (GSP 3.00 SDC)
4x transistor (GSP 4.00 SDC)
■ Indication of contact state by LED
■ Additional functions: Hysteresis, ON/ OFF-delay, window, tendency, inverse function, alarm

- Parameterization without auxiliary power via PC-interface
■ Galvanic 2-way isolation of $2,5 \mathrm{kV}$

FUNCTION

The GSP 3.00 SDC and GSP 4.00 SDC is used for the control of limit values of standardized signals. The limit switch is being parameterized by the USB2 adapter in connection with KALIB-Software. For the output are 3 or 4 transistor switches available which are equipped with limit values, hysteresis, ON/ OFFdelay, window, alarm, inverse function, tendency and sensor control each. The devices can be applied as threshold switch and supervisory relay to monitor temperature, pressure, dry runtime, motor protection, speed, etc.

The values to be controlled can exist as $D C$ signal or DC voltage signal. After internal preparation the input signal will be compared with the digital adjusted limit value and in case of exceeding or falling off the transistor output will be energized. The GSP 3.00 SDC is equipped with a 24 V DC input to reset the alarm function.

GSP 3.00 SDC GSP 4.00 SDC

Connection diagram:

Output K1, K2, K3, K4

Schuhmann GmbH \& Co. KG
 Römerstraße 2
 D-74363 Güglingen
 Tel. +4971355056
 E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:		
I: load-independent DC current: connection:	0(4)... 20 mA terminal 3-, 4+	input resistance approx. 100Ω
U: load-independent DC voltage: connection:	$0(2) \ldots 10 \mathrm{~V}$ terminal $4-, 3+$	input resistance approx. $100 \mathrm{k} \Omega$
GSP 3.00 SDC: is equipped with a 24 V DC inp connection:	reset the alarm func terminal $8+$ (at te	1 -) or terminal 8 - (at terminal $1+$)

Output:

transistor outputs:
Load:
max. 30 V AC/ DC, max. $100 \mathrm{~mA} \mathrm{AC/DC}$
connection:
see connection diagramm
The switching outputs refer to the auxiliary power with a common radix.
Module for heavy loads:
Relay interface module, 2 relays with 6 A, 250 V Type: RE 2.00 S

Adjustment:

Measuring ranges, switching points and parameterization are adjustable in parameter data by KALIB-Software. For this you need a PC as well as the interface adapter USB2/ USB-Simulator with
KALIB-Software.
Parameterization for each channel:
Limit value adjustment:
Hysteresis:
ON/ OFF-delay:
Functions:

$$
\begin{array}{ll}
0,0 \ldots 110,0 \% & \text { adjustable in } 0,1 \% \text { steps } \\
0,1 \ldots 90,0 \% & \text { adjustable in } 0,1 \% \text { steps } \\
0,0 \ldots 999,0 \text { sec. } & \text { adjustable in } 0,1 \mathrm{sec} \text { steps }
\end{array}
$$

limit value, limit value range, tendency,
inverse function, alarm function, start state, start time
Display:

LED status:	green, active green, flashing	input signals are in standard range, device ready for use input out of predetermined limits or exceeding of measuring range
LED K1:	green, active	K1 closed
LED K2:	green, active	K2 closed
LED K3:	green, active	K3 closed
LED K4:	green, active	K4 closed

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $\quad 0 \ldots . .55^{\circ} \mathrm{C}$
Isolation voltage: $2,5 \mathrm{kV}$ eff. 1 sec . input-output
$2,5 \mathrm{kV}$ eff. 1 sec . auxiliary voltage
Auxiliary power:

24 V DC:
Influence of
auxiliary power: $\quad<0,1 \%$
Characteristics of transmission:
Resolution:
Linearity error:
Temperature error:
10 bit

Response time:
$<0,5 \%$ of final value
$<30 \mathrm{ppm} / \mathrm{K}$
$<10 \mathrm{msec}$.

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during
HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to
EN $50022-35 \times 6,2 \mathrm{~mm}$
Width:
6,2 mm
Weight: $\quad 52 \mathrm{~g}$
Material:
Flammability class: Vo (UL 94)
Approval: CE
Connection: screw clamps
$0,14 \ldots 2,5 \mathrm{~mm}^{2}$
Please check parameterization before initial operation!

Ordering information:	Type:	GSP 3.00 SDC	24 VDC
		GSP 4.00 SDC	24 VDC
	Accessories:	USB2/ USB-Sim	with
		KALIB-Softwar	

FEATURES

- Frequency input: Namur max. 10 kHz
■ Output: 2x transistor
■ Indication of contact state by LED
■ Additional functions:
Hysteresis, ON/ OFF-delay, window, tendency, inverse function, alarm
- Parameterization without auxiliary power via PC-interface
■ Galvanic 3-way isolation of $2,5 \mathrm{kV}$
■ Low internal consumption

FUNCTION

The GSF 2.00 SDC is used for the control of frequencies. As input signal namur signals are processed with a frequency range up to 10 kHz . As a result rotational speed on min./ max. or accelerations can be specified and given out as switching contact. The limit switch is being parameterized by the USB2 adapter in connection with KALIB-Software. For the output 2 potential free transistor switches are available which are equipped with limit values, hysteresis, ON/OFF-delay, window, alarm, inverse function, tendency and sensor control each.

The process variable to be controlled is supplied by a comparator to the processor as frequency after having passed an input filter. Due to the adjustable gate time the frequency can be recorded accordingly and depending on the set-point the transistor output will be energized.

Input:
Namur EN 50227 or potential free contact:

maximum voltage:	$\mathrm{U}_{\text {max }}=8 \mathrm{~V}$
maximum current:	$I_{\max }=8 \mathrm{~mA}$
connection:	terminal $4-, 3+$

Output:

2 transistor outputs: Ioad: connection K1: connection K2:	max. $30 \mathrm{~V} \mathrm{AC/} \mathrm{DC}, \mathrm{max} .100 \mathrm{~mA} \mathrm{AC/DC}$ terminal 7,8
Module for heavy loads:	Rerminal 5,6
	Type: RE 2.00 S

Parameterization for each channel:

Limit value adjustment:	$0 \ldots . .12000 \mathrm{~Hz}$	adjustable in 1 Hz steps
Hysteresis:	$5 \ldots . .11000 \mathrm{~Hz}$	adjustable in 1 Hz steps
ON/ OFF-delay:	$0,0 \ldots 999,0$ sec.	adjustable in 0,1 sec. steps
Functions:	limit value, limit value range, tendency,	
	inverse function, alarm function, start state, start time	

Display:

LED status:	green, active green, flashing	input signals are in standard range, device ready for use input out of predetermined limits or exceeding of measuring range
LED K1:	green, active LED K2:	K1 closed
	green, active	K2 closed

Environmental conditions:		Directive:					
Storage temperature: Operating temperature:	$-40 \ldots+70^{\circ} \mathrm{C}$	EMC Directive: Low Voltage Directive:		2014/3			
	0... $55^{\circ} \mathrm{C}$			2014/3			
Isolation voltage: 2,5 kV eff. 1 sec . input-output $2,5 \mathrm{kV}$ eff. 1 sec . auxiliary voltage		*minimum deviations possible during HF-radiation influence					
Auxiliary power:		Housing for top hat rail					
24 V DC:	$\begin{aligned} & 20 \ldots 30 \mathrm{VDC} \\ & <1,5 \mathrm{~W} \end{aligned}$	Type of protection: IP 20					
Influence of auxiliary power:	<0,1\%	Width:	EN 50022-35 $\times 6,2 \mathrm{~mm}$				
Characteristics of transmission:		Weight:		52 g			
		Polyam					
Resolution: Linearity error: Temperature error: Response time:				Flammability class: Approval: Connection:		Vo (UL	
	$<0,5 \%$ of final value	CE					
	$\begin{aligned} & <30 \mathrm{ppm} / \mathrm{K} \\ & <10 \mathrm{msec} . \end{aligned}$	Connection:		$\begin{aligned} & \text { screw c } \\ & 0,14 \ldots 2, \end{aligned}$			
		Please check initial opera	param on!	rizatio			
Ordering information:		Type: Accessories:	GSF 2.00 SDC 24 V DC				
			SB-Simu oftware	with nual			

Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
*minimum deviations possible during

Housing for top hat rail IP 20
Type of protection:
Mounting rail fixed according to

Please check parameterization before initial operation!

FEATURES

■ Frequency input: square wave signal $24 \mathrm{~V} \mathrm{DC/} 10 \mathrm{kHz}$
■ Output: 2x transistor
■ Indication of contact state by LED

- Additional functions:

Hysteresis, ON/ OFF-delay, window, tendency, inverse function, alarm

- Parameterization without auxiliary power via PC-interface
■ Galvanic 3-way isolation of $2,5 \mathrm{kV}$

■ Low internal consumption

FUNCTION

The GSF 2.00 SDC 021 is used for the control of frequencies. As input signal square wave signals are processed with a frequency range up to 10 kHz . As a result rotational speed on min./ max. or accelerations can be specified and given out as switching contact. The limit switch is being parameterized by the USB2 adapter in connection with KALIBSoftware. For the output 2 potential free transistor switches are available which are equipped with limit values, hysteresis, ON/OFF-delay, window, alarm, inverse function, tendency and sensor control each.

The process variable to be controlled is supplied by a comparator to the processor as frequency after having passed an input filter. Due to the adjustable gate time the frequency can be recorded accordingly and depending on the set-point the transistor output will be energized.

GSF 2.00 SDC 021

Connection diagram:

Input:
Square wave signal:
maximum voltage:
maximum frequency:
connection:
$U_{\text {max }}=24 \mathrm{VDC}$
$\mathrm{F}_{\text {max }}=10 \mathrm{kHz}$
terminal 4-, 3 +

Output:

2 transistor outputs:
load:
connection K1:
max. 30 V AC/ DC, max. $100 \mathrm{~mA} \mathrm{AC/} \mathrm{DC}$
connection K2: terminal 7, 8 terminal 5, 6
Module for heavy loads: Relay interface module, 2 relays with 6 A, 250 V Type: RE 2.00 S

Adjustment:

Measuring ranges and parameterization are adjustable in parameter data by KALIB-Software. For this you need a PC as well as the interface adapter USB2/ USB-Simulator with KALIB-

Software

Parameterization for each channel:

Environmental conditions
 Storage temperature:
 $-40 \ldots+70^{\circ} \mathrm{C}$
 $0 . . .55^{\circ} \mathrm{C}$
 Operating temperature
 Isolation voltage:
 $$
\begin{aligned} & \text { 2,5 kV eff. } 1 \mathrm{sec} \text {. input-output } \\ & \text { 2,5 kV eff. } 1 \mathrm{sec} \text {. auxiliary voltage } \end{aligned}
$$

Auxiliary power:

24 V DC
Influence of auxiliary power: $\quad<0,1 \%$

Characteristics of transmission:

Resolution:
10 bit
Linearity error:
Temperature error:
$<0,5 \%$ of final value
< $30 \mathrm{ppm} / \mathrm{K}$
$<10 \mathrm{msec}$.

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during HF-radiation influence

Mounting details:
Housing for top hat rail
Type of protection: IP 20
mounting rail fixed according to

EN $50022-35 \times 6,2 \mathrm{~mm}$	
	$6,2 \mathrm{~mm}$
	52 g
	Polyamide PA
S: \quad VO (UL 94)	
	CE
	screw clamps
	$0,142.5 \mathrm{~mm}^{2}$

$0,14 \ldots .2 \mathrm{~mm}^{2}$

Please check parameterization before initial operation!

Ordering information:	Type: Accessories:	GSF 2.00 SDC $021 \quad 24 \mathrm{VDC}$ USB2/ USB-Simulator with KALIB-Software

FEATURES

■ Indication of contact state by LED
■ Control of 4... 20 mA current loops

- Response time: at $\mathrm{K} 1<10 \mathrm{msec}$. at K2 ~ 10 sec .
- Parameterization without auxiliary power via PC-interface

■ Galvanic 3-way isolation of $2,5 \mathrm{kV}$

- Low internal consumption

FUNCTION

The Live-Zero Monitoring Device GSP 2.04 SDC is used for the protection and control of process engineering facilities. Hereby the $4 . . .20 \mathrm{~mA}$ current loop is controlled against overload and wire break. In the range of $3,6 \mathrm{~mA}$ and $22,0 \mathrm{~mA}$ the switch K 1 is closed at applied supply voltage.

In case of the loop current is falling below $3,6 \mathrm{~mA}$ or the value exceeds $22,0 \mathrm{~mA}$, the potential free switch K1 is opening immediately. The switch K2 operates in the same way as K1 but with a turn-off delay of 10 sec . Those values are set ex work and can be changed by the USB2 adapter in connection with the KALIB-Software.

Input:		
I: Ioad-independent DC current:	$0(4) \ldots 20 \mathrm{~mA}$ terminal $3-, 4+$	input resistance approx. 100Ω
connection:	$0(2) \ldots 10 \mathrm{~V}$ U: load-independent DC voltage: connection:	input resistance approx. $100 \mathrm{k} \Omega$

Output:

2 transistor outputs:
Load:
connection K1:
connection K2:
Module for heavy loads:
max. 30 V AC/ DC, max. 100 mA AC/ DC
terminal 7, 8
terminal 5, 6
Relay interface module, 2 relays with $6 \mathrm{~A}, 250 \mathrm{~V}$ Type: RE 2.00 S

Adjustment:

Measuring ranges, switching points and parameterization are adjustable in parameter data by KALIB-Software. For this you need a PC as well as the interface adapter USB2/ USB-Simulator with
KALIB-Software.
Parameterization for each channel:

Limit value adjustment:		0,0...110,0 \%	adjustable in 0,1 \% steps
Hysteresis:		0,1...90,0 \%	adjustable in 0,1 \% steps
ON/ OFF-delay:		0,0...999,0 sec	adjustable in 0,1 sec. steps
Functions:		limit value, limit value range, tendency, inverse function, alarm function, start state, start time	
Preset parameterization (change possible):			
Fixed inrush current at:		$3,6 \mathrm{~mA}<1<22,0 \mathrm{~mA}$	
Fixed breaking current at:		I < $2,6 \mathrm{~mA}$ and $\mathrm{I}>22,0 \mathrm{~mA}$	
Switching delay at K1:		approx. 10 msec .	
Turn-off delay at K2:		10 sec .	
Display:			
LED status:	green, active	input signals are in standard range, device ready for use input out of predetermined limits or exceeding of measuring range	
	green, flashing		
LED K1:	green, active	K1 closed	
LED K2:	green, active	K2 closed	

Environmental conditions:

Storage temperature: $\quad-40 \ldots+70^{\circ} \mathrm{C}$
Operating temperature: $\quad 0 . . .55^{\circ} \mathrm{C}$
Isolation voltage:

> 2,5 kV eff. 1 sec. input-output 2,5 kV eff. 1 sec . auxiliary voltage

Auxiliary power:

24 V D:
Influence of
auxiliary power:
20... 30 V DC

$$
<1,5 \mathrm{~W}
$$

Characteristics of transmission:

Resolution:
Linearity error:
Temperature error:
10 bit

Response time:
< $30 \mathrm{ppm} / \mathrm{K}$
$<10 \mathrm{msec}$.

Directive:

EMC Directive:	2014/30/EU*
Low Voltage Directive:	$2014 / 35 / E U$

*minimum deviations possible during
HF-radiation influence

Mounting details:

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to
EN 50022-35 x 6,2 mm
6,2 mm
52 g
Polyamide PA
Vo (UL 94)
CE
screw clamps
$0,14 \ldots 2,5 \mathrm{~mm}^{2}$
Please check parameterization before initial operation!

Ordering information:	Type:	GSP 2.04 SDC 24 VDC
Accessories:	USB2/ USB-Simulator with KALIB-Software, manual	

Title	Specification	PC- Inter- face	Available designs	Auxiliary power	Page
DIGITAL FREQUENCY ANALOG TRANSDUCER on-site service and actual value over display, frequency conversion, input contact or 2-wire initiator according to EN 50227 (NAMUR), potential free contact, opto 3-wire reflection light barrier, 24 V NPN-signal, $0,01 \mathrm{~Hz} . . .10 \mathrm{~K} \mathrm{~Hz}$, output: I/ U free scalable, current: $0 . . .20 \mathrm{~mA}$ or voltage $0 . . .10 \mathrm{~V}$, contact output: frequency divider/ multiplier, parameterization and handling by pushbutton or via the USB2-interface and the free KALIB-software. Display of actual value via LCD.					
DFA 1.10 GW	$1 \times$ sensor input universal 1 xoutput I/U 1 x contact relay (impulse)	X	G 22,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	04-01
DFA 1.11 GW	$1 \times$ sensor input universal 1 x output I/U 1 x contact SSR (impulse)	X	G 22,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	04-01
DFA 1.20 GW	$2 x$ sensor input universal $1 \times$ output I/U 1 x contact relay (impulse) 1 x contact relay (limit value)	X	G 22,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	04-01
DFA 1.21 GW	$2 x$ sensor input universal 1 xoutput I/U 1 x contact SSR (Impulse) 1 x contact relay (limit value)	X	G 22,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	04-01
DFA 1.22 GW	$2 \times$ sensor input universal $2 \times$ output I/U 1 x contact relay (impulse) 1 x contact relay (limit value)	X	G 22,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	04-01
DFA 1.23 GW	$2 \times$ sensor input universal $2 \times$ output I/U 1 x contact SSR (impulse) 1 x contact relay (limit value)	X	G 22,5	24... 250 V DC, $90 . . .253 \mathrm{~V} \mathrm{AC}$	04-01

More devices see back page

[^21]Year
Warranty

Digital Pulse and Frequency Processing

Title	Specification	PC- Inter- face	Available designs	Auxiliary power	Page
DIGITAL FREQUENCY ANALOG TRANSDUCER on-site service and actual value over display, frequency conversion, contact or 2-wire initiator according to EN 50227 (NAMUR), opto-3-wire, parameterizable					
DFA 2.00 GW	```2x input: namur/ opto-3-wire/ contact, 0...100 Hz, 1x transistor output outputs: 0(4)...20 mA, 0(2)...10 V```		G 72	24... 250 V DC, 90... 253 V AC	04-11
DFA 8.00 TW	input: namur/ contact, $0 . . .10 \mathrm{kHz}$, outputs: 0 (4) ... $20 \mathrm{~mA}, 0(2) \ldots 10 \mathrm{~V}$		T	24... 250 V DC, 90... 253 V AC	04-15
DFA 8.30 TW	input: namur/ contact, $0 \ldots . .10 \mathrm{kHz}$, outputs: 0 (4) ... $20 \mathrm{~mA}, 0(2) \ldots 10 \mathrm{~V}$, transistor output, potential free changer, limit switch		T	24... 250 V DC, 90... 253 V AC	04-15
DFA 8.40 TW	inputs: $2 x$ contact or $2 x$ namur, addition/ subtraction outputs: 0 (4) ... $20 \mathrm{~mA}, 0(2) \ldots 10 \mathrm{~V}$, transistor output, potential free changer, limit switch		T	24... 250 V DC, 90... 253 V AC	04-15
DIGITAL PULSE SUMMATOR control contact, reflecting light barrier or 2-wire initiator according to EN 50227 (NAMUR)					
SI 5.20 GW	2-channel, namur/ opto/ contact, switchable pulse storage per channel, switching the output signal and summing the input pulses, output signals: 2 pulse outputs max. $230 \mathrm{~V} / 100 \mathrm{~mA}$		G 72	24... 250 V DC, 90... 253 V AC	04-23
FREQUENCY DIVIDER					
IV 7.00 MW	input: namur/ reflecting light barrier/ contact/ 24 V signals/ tacho generator, 0 ... 20 kHz output: transistor (max. 400 Hz) and relays pulse divider, multiplier, monitoring	X	G 12,5	24... 250 V DC, 90... 253 V AC	04-25
IV 7.10 MW	input: namur/ reflecting light barrier/ contact/ 24 V signals/ tacho generator, $0 . . .20 \mathrm{kHz}$ output: optocouple (max. 10 kHz) and relays pulse divider, multiplier, monitoring	X	G 12,5	24... 250 V DC, 90... 253 V AC	04-27
SWITCHING AMPLIFIER					
IV 5.00 MW	input: namur/ reflecting light barrier/ contact/ 24 V signals/ tacho generator, $0 \mathrm{O} . .400 \mathrm{~Hz}$ output: transistor (max. 400 Hz) and relays pulse contact, wipe time, monitoring	X	G 12,5	24... 250 V DC, 90... 253 V AC	04-29
IV 5.02 MW	input: namur/ reflecting light barrier/ contact/ 24 V signals/ tacho generator, $0 . . .400 \mathrm{~Hz}$ output: 2 relays; pulse contact, wipe time, monitoring	X	G 12,5	24... 250 V DC, 90... 253 V AC	04-31
IV 5.10 MW	input: namur/ reflecting light barrier/ contact/ 24 V signals/ tacho generator, $0 \mathrm{O} . .400 \mathrm{~Hz}$ output: optocouple (max. 100 kHz) and relays pulse contact, wipe time, monitoring	X	G 12,5	24... 250 V DC, 90... 253 V AC	04-33

[^22]
FEATURES

- Input:

2-wire initiator (Namur)/ potential
free contact, opto reflection
light barrier, 24 V NPN-signal,
$0,01 \mathrm{~Hz} . . .10 \mathrm{kHz}$
■ Output I/U - free scalable: current 0... 20 mA or voltage 0... 10
■ Contact Output:
frequency divider/multiplier
■ Parameterization and handling by push-button or PC interface
■ Display of actual value via LCD
■ Galvanic 3-way-isolation of 4 kV

FUNCTION

The DFA 1-series is converting input signals of frequency sensors into standard current and voltage signals, e.g. at flow rate measurment, logging of rotation speed, monitoring of motors etc.
The parameterization is carried out by front side push-buttons and LCD display or via the integrated USB2/ USB-Simulator Interface in connection with the KALIB-Software

For monitoring reasons the actual state of the current in- and outputs can be displayed on the display. Every sensor input/ frequency output/ limit can be freely evaluated.
The two inputs can be added or subtracted.
Further details to be found at:
ORDERING INFORMATION.

 －automatic change of display

ーローロ display channel 1

```
                            ロー
``` －display channel 2


\footnotetext{
Legend： selection next automatic change of display
}
\begin{tabular}{|c|c|c|c|}
\hline description & menu & selection & change／save \\
\hline signal selection analog output 1 （all types） & & \begin{tabular}{l}
analog output signal current or voltage \\
\(0 . . .20 \mathrm{~mA} / 0 . .10 \mathrm{~V}\) \\
Curr \(\xlongequal{\wedge}\) currentoutputactive \\
WoLt へ voltage output active \\
－no－气 outputdeactivated
\end{tabular} & \begin{tabular}{l}
change unit （display blinks） \\
press short， save selection
\end{tabular} \\
\hline signal source analog output 1 only at DFA 1．20／1．21／1．22／1．23 & 81．1n & \begin{tabular}{l}
Various input sources can be selected for the \\
analog output 1
\[
\begin{aligned}
& E 1 \quad \triangleq \text { only signals out of input } 1 \\
& E Z \quad \triangleq \text { only signals out of input } 2 \\
& E 1+E Z \triangleq \text { addition of input } 1+\text { input } 2 \\
& E 1-E Z \triangleq \text { substraction of input } 1-\text { input } 2 \\
& E Z-E 1
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
change unit （display blinks） \\
press short， save selection
\end{tabular} \\
\hline scaling of analog output 1 （all types） & \begin{tabular}{l}
ㅇ． \(5 \subset 8\) \\
press \\
short
\end{tabular} & A scaling for the analog output 1 can be set e．g．at unit \(1 / \mathrm{sec}\) ．and final value 20 mA ： ScRL \(=35 \rightarrow 35 \mathrm{I} / \mathrm{sec} . 气 20 \mathrm{~mA}(100 \%)\) id est input： \(0 . . .35 \mathrm{I} / \mathrm{sec}\) ．is going to be changed to output at e．g． \(0 . . .20 \mathrm{~mA}\) & \begin{tabular}{l}
change unit \\
（display blinks） \\
press short， save selection
\end{tabular} \\
\hline \begin{tabular}{l}
range selection analog output 1 \\
（all types）
\end{tabular} & ㄱ．\(b E G\) & at Curr \(0,00 \rightarrow 0,00 \mathrm{~mA}\) at \(0 \%\) input signal at Curr \(4,00 \rightarrow 4,00 \mathrm{~mA}\) at \(0 \%\) input signal at VoLt \(0,00 \rightarrow 0,00 \mathrm{~V}\) at \(0 \%\) input signal at VoLt \(2,00 \rightarrow 2,00 \mathrm{~V}\) at \(0 \%\) input signal & \begin{tabular}{l}
change unit \\
（display blinks） \\
press short， save selection
\end{tabular} \\
\hline end of range analog output 1 （all types） & R．End
press short & \begin{tabular}{l}
analog signal 1 final value at \(\mathrm{mA} / \mathrm{V}\) output \\
at Curr 20，00 \(\rightarrow 20,00 \mathrm{~mA}\) at \(100 \%\) input signal \\
at VoLL \(10,00 \rightarrow 10,00 \mathrm{~V}\) at \(100 \%\) input signal
\end{tabular} & \begin{tabular}{l}
change unit （display blinks） \\
press short， save selection
\end{tabular} \\
\hline damping of analog signal 1 （all types） & & \begin{tabular}{l}
Damping of analog signal 1 in seconds． \\
After the given time constant the analog output signal has adjusted upon \(90 \%\) ．
\end{tabular} & \begin{tabular}{l}
change unit （display blinks） \\
press short， save selection
\end{tabular} \\
\hline
\end{tabular}
next \(\ldots \ldots \ldots\) automatic change of display \(\square\) display channel 1 \(\qquad\) display channel 2

\section*{PARAMETERIZATION MENU}
description
change/save
\begin{tabular}{l}
range selection \\
analog output 2 \\
only at DFA \(1.22 / 1.23\)
\end{tabular}
\begin{tabular}{l}
andog signal 2 range selection at ma/volt output \\
analog output 2 \\
only at DFA \(1.22 / 1.23\)
\end{tabular}
damping of analog signal 2
only at DFA \(1.22 / 1.23\)

\section*{PARAMETERIZATION MENU}
description
\begin{tabular}{l}
output function of \\
the impulse switch \\
（all types
\end{tabular}
\begin{tabular}{lll}
signal source impulse output \\
only at DFA \(1.20 / 1.21 / 1.22 / 1.23\)
\end{tabular}
impulse duration switch 1
only at \(D F A 1.20 / 1.21 / 1.22 / 1.23\)

Legend： selection
automatic change of display
ーロロロ
display channel 1

PARAMETERIZATION MENU
\begin{tabular}{|c|c|c|c|}
\hline description & menu & selection & change／save \\
\hline upper switch point switch 2 only at DFA 1．20／1．21／1．22／1．23 & L．H． & \begin{tabular}{l}
display of unit L－SE，L－RI，9－h，HErt．rot \\
upper limit value e．g． 72.34 ，switching when actual value has exceeded \(>\) limit value
\end{tabular} & \begin{tabular}{l}
change value （display blinks） \\
press short， save selection
\end{tabular} \\
\hline lower switch point switch 2 nur DFA 1．20／1．21／1．22／1．23 & LILO & \begin{tabular}{l}
display of unit L－SE，L－กI，9－h，HErt．rot \\
lower limit value e．g． \(\mathbf{7 2 . 3 4}\) ，switching when actual value has fallen below＜limit value
\end{tabular} & \begin{tabular}{l}
change value （display blinks） \\
press short， save selection
\end{tabular} \\
\hline effective direction of switch 2 only at DFA 1．20／1．21／1．22／．1．23 & \[
\text { r. }{ }^{\prime} 1
\] & \begin{tabular}{l}
r．no：normally open， \(\mathbf{O N}\) at exceeding／falling below \\
r．nE：normally closed，OFF at exceeding／falling below
\end{tabular} & \begin{tabular}{l}
change function （display blinks） \\
press short， save selection
\end{tabular} \\
\hline switch－on delay of switch 2 only at DFA 1．20／1．21／1．22／1．23 & \begin{tabular}{l}
ㄴ． 00 \\
press short
\end{tabular} & \begin{tabular}{l}
display of unit SEL \\
after e．g． \(\mathbf{1 2}\) ． \(3 \boldsymbol{3} \boldsymbol{4}\) seconds delay switch 2 is being switched on．
\end{tabular} & \begin{tabular}{l}
change value （display blinks） \\
press short， save selection
\end{tabular} \\
\hline switch－off delay of switch 2 only at DFA 1．20／1．21／1．22／1．23 & L．ofF & \begin{tabular}{l}
display of unit SEL \\
after e．g． \(\mathbf{1 2}\) ． \(3 \boldsymbol{3} \boldsymbol{4}\) seconds delay switch 2 is being switched off．
\end{tabular} & \begin{tabular}{l}
change value （display blinks） \\
press short， save selection
\end{tabular} \\
\hline \begin{tabular}{l}
end of parameterization \\
（all types）
\end{tabular} & ENód & & \\
\hline
\end{tabular}

\footnotetext{
Legend： selection next \(\cdots \cdots \cdots\) automatic change of display ーロロロ display channel 1 صーصロ display channel 2
}
change value：

definition of decimal places：

delete decimal places：
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline previous value & change position 1 & decimal place selected & confirm & \[
\begin{aligned}
& \text { decimal place } \\
& \text { set }
\end{aligned}
\] & confirm & change pos． with & confirm & confirm 3 times for position 2， 3 and 4， \\
\hline & & & & & & & & \\
\hline
\end{tabular}
delete position：

\section*{Details of operation：}

The display position gets changed with the push－ button（1）．Values such as（ 0 to（ 9 ，minus \(\square\) comma \(\square\) an space \(\square\) are possible．

The push－button is being used to save or select the next position．After the change of the last position，the change to the next menu item is possible with the push－button．For a break－off push longer．

\section*{Legend：}
（2）Digit on display blinks

automatic change of display
ーロصص display channel 1
ローロロ display channel 2

\section*{Input:}

Namur EN 50227 or potential free contact:
max. current:
max. voltage:
connection input 1:
connection input 2 (optional):
\(I_{\text {max }}=8 \mathrm{~mA}\)
\(\mathrm{U}_{\text {max }}=8 \mathrm{~V}\)
terminal \(8+\) (brown), 7 - (white)
terminal \(4+\) (brown), 3 - (white)
reflection light barrier:
LED current:
signal current:
connection input 1:
connection output 2:
24 V signals/generator:
Max. input voltage:
Max. input current:
terminal channel 1 (channel 2) Namur
\(\equiv-7(3)\) - white」-8(4) + brown

reflection light
barrier

terminal 6 (white), 8 (brown), 7 (green)
terminal 6 (white), 4 (brown), 3 (green)
24 V signals
30 V
ca. 8 mA regulated

\section*{Output:}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
I: Ioad-independent DC current: connection: \\
set up in menu BI.oP= 「ur
\end{tabular} & \multicolumn{3}{|r|}{0... 20 mA , free adjustable terminal \(10+, 9-\)} & \begin{tabular}{l}
permissible load max. \(540 \Omega\) \\
(at DFA 1.22 additional 13-, 14+)
\end{tabular} \\
\hline U: load-independent DC voltage: connection: set up in menu RI. \(\quad\) OP \(=\boldsymbol{V I D L T}\) & \multicolumn{3}{|r|}{\(0 . . .10 \mathrm{~V}\), free adjustable terminal \(10+\), 9 -} & \begin{tabular}{l}
permissible load max. \(\geq 1 \mathrm{k} \Omega\) \\
(at DFA 1.22 additional 13-, 14+)
\end{tabular} \\
\hline \begin{tabular}{l}
relayoutput DFA 1.10, 1.20, 1.22: \\
max. switching current/voltage: \\
life cycle: \\
contact life cycle: \\
impulse duration: \\
impulse valency: \\
connection:
\end{tabular} & \multicolumn{4}{|r|}{```
changer
5 A/250 V AC
mechanical 30\times106 cycles/electrical 30\times105 cycles
105 cycles
0,1...9999 sec.
adjustable
terminal 11, 12 (at DFA 1.22, 1.23: additional 15, 16)
```} \\
\hline \begin{tabular}{l}
limit range DC current: \\
1 - resistive load \\
2 - inductive load
\end{tabular} & \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}
transistor output DFA 1.11, 1.21, 1.23: max. 250 Hz
max. 50 mA
max. 60 V
Impulsdauer:
Impulswertigkeit:
2 msek... 9999 sec.

Anschluss:
adjustable
terminal 11, 12 bipolar

\section*{Adjustment:}

The functions are adjusted by two front side push-buttons and display (from page 04-02) or via the KALIB-Software. For this you need a PC as well as the interface adapter USB2 / USB-Simulator with
KALIB-Software. All parameterfiles can be saved and transfered to further units.

\section*{display:}

4-digit LC-display with four bargraphs to indicate the in- and outputs.
1. display / parameter channel 1
2. display/ parameter channel 2


\section*{DFA 1.XX GW}

Connection diagram:

\section*{DFA 1.10 GW / DFA 1.11 GW}

- Auxiliary power
input sensor 1 see sensor connection

DFA 1.10:
impulse output
max. 5 A/250 V
DFA 1.11:
impulse output SSR
max. \(50 \mathrm{~mA} / 60 \mathrm{~V}\)
output I/U I active \(0 \ldots 20 \mathrm{~mA}\)
U active \(0 . .10 \mathrm{~V}\)

\section*{DFA 1.20 GW /DFA 1.21 GW}

- Auxiliary power
input sensor 2 see sensor connection input sensor 1 see sensor connection

DFA 1.20:
max. \(5 \mathrm{~mA} / 250 \mathrm{~V}\)
DFA 1.21:
impulse output SSR
max. \(50 \mathrm{~mA} / 60 \mathrm{~V}\)
output I/U
I active \(0 . . .20 \mathrm{~mA}\)
U active \(0 \ldots . .10 \mathrm{~V}\)
limit value relay 2 max. \(5 \mathrm{~A} / 250 \mathrm{~V}\)
DFA 1.22 GW/DFA 1.23 GW

- Auxiliary power
input sensor 2 see sensor connection input sensor 1 see sensor connection

DFA 1.22:
impulse output relay 1
max. 5 A/250 V
DFA 1.23:
impulse output SSR max. \(50 \mathrm{~mA} / 60 \mathrm{VI} / \mathrm{U}\) output 1 I active \(0 . . .20 \mathrm{~mA}\) U active \(0 . . .10 \mathrm{~V}\)
limit value relay 2 max. \(5 \mathrm{~A} / 250 \mathrm{VI} / \mathrm{U}\)
output 2 I aktiv 0... 20 mA U aktiv \(0 . . .10 \mathrm{~V}\)

\section*{Enviormental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(0 . . .55^{\circ} \mathrm{C}\)
Isolation voltage: \(\quad 4 \mathrm{kV}\) eff. 1 sec . input-output-auxiliary power

\section*{Auxiliary power:}

Housing for top hat rail:
Wide range:

> 24... 250 V DC
> \(90 . .253 \mathrm{~V} \mathrm{AC}\)
> \(<3 \mathrm{~W}\)

\section*{Characteristics of transmission:}
\begin{tabular}{ll} 
Linearity error: & \(<0,1 \%\) of final value \\
Temperature error: & \(<100 \mathrm{ppm} / \mathrm{K}\)
\end{tabular}

\section*{Directive:}

EMV Directive: 2014/30/EU*
Low Voltage Directive: 2014/35/EU
*minimum devations possible during HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail:
\(\begin{array}{ll}\text { Type of protection: } & \begin{array}{l}\text { IP } 20 \text { housing } \\ \text { IP } 20 \text { clamps }\end{array}\end{array}\)
Mounting rail fixed according to
EN \(50022-35 \times 7,5 \mathrm{~mm}\)
Width:
\(22,5 \mathrm{~mm}\)
160 g
Polyamid PA
Vo (UL94)
CE
plugg.
screw clamps
\(0,2 \ldots 2,5 \mathrm{~mm}^{2}\)

For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.

\section*{Ordering information:}

\section*{Type:}

DFA 1.xx W

\(G=\) housing to top hat rail 35 mm
\(10=1 \times\) sensor input universal
\(1 \times\) output I/U
1 x contact relay (impulse)
\(11=1 \times\) sensor input universal
\(1 \times\) output I/U
1 x contact SSR (impulse)
\(20=2 \times\) sensor input universal
\(1 \times\) output I/U
\(1 \times\) contact relay (impulse)
1 x contact relay (limit value)
\(21=2 \times\) sensor input universal
\(1 \times\) output I/U
1 x contact SSR (Impulse)
\(1 \times\) contact relay (limit value)
\(22=2 \times\) sensor input universal
\(2 \times\) output I/U
\(1 \times\) contact relay (impulse)
1 x contact relay (limit value)
\(23=2 \times\) sensor input universal
\(2 \times\) output I/U
1 x contact SSR (impulse)
1 x contact relay (limit value)

\section*{FEATURES}
- 2 inputs:

2-wire initiator (Namur) or potential free contact or reflecting light barrier or reflecting light barrier with amplifier
■ Self-optimizing switching threshold
■ Output, simultaneously: current 0(4)... 20 mA and/ or voltage 0(2)... 10 V and a switching output as a frequency divider (e.g. \(\mathrm{m}^{3} /\) pulse)

■ Frequency conversion 0,1 Hz... 100 Hz
- Galvanic 3-way isolation

\section*{FUNCTION}

The range of applications includes primarily the transmission of instantaneous values and forms the basis for the display and/ or registration of the flow in pipelines.
The current output also serves for regulation and monitoring tasks.


The microprocessor controlled frequency analog transducer converts the pulses from the donors of the water meter (main and secondary meter) in a direct current (digital to analog converter). The current here is proportional to the instantaneous flow.
At two donors, the pulses are added.
Furthermore, the device is used to scale high resolution pulses in decadal pulses (e.g. \(\mathrm{m}^{3}\) ).
The programming of the transducer DFA 2.00 GW is performed by the three push buttons on the front panel.




Legend: \(\uparrow\) [T1/T2] navigation/ selection (in parametrization)
[T3] Next (parametrization); longer than 3 sec. --> abort


Legend: (1)[T1/T2] navigation/ selection (in parametrization)
[T3] Next (parametrization); longer than 3 sec. \(-->\) abort

\section*{DFA 2.00 GW}

\section*{Connection diagram:}

Auxiliary power/ outputs:


Input channel \(1+\) channel 2 :


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

\section*{Input:}

Namur EN 50227 or potential free contact:
\begin{tabular}{ll} 
max. current: & \(I_{\text {max }}=8 \mathrm{~mA}\) \\
max. voltage: & \(\bigcup_{\text {max }}=8 \mathrm{~V}\) \\
connection terminals: & 5,7 (see connection diagram)
\end{tabular}
reflecting light barrier:
connection terminals: 5,6,7 (see connection diagram)
reflecting light barrier with amplifier:
connection terminals: \(\quad 5,7,8\) (see connection diagram)
input frequency range: \(\quad 0,1 \mathrm{~Hz} \ldots 100 \mathrm{~Hz}\)

\section*{Output:}
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
I: Ioad-independent DC current: \\
connection terminals:
\end{tabular} & \begin{tabular}{l}
\(0(4) \ldots 20 \mathrm{~mA}\) \\
24,25 (see connection diagram)
\end{tabular} \\
\hline U: load-independent DC voltage: & \(0(2) \ldots 10 \mathrm{~V}\) \\
\begin{tabular}{ll} 
permissible load max. \(540 \Omega\) \\
connection terminals: load \(\geq 3 \mathrm{k} \Omega\) simultaneous operat. \\
perm. load \(\geq 1 \mathrm{k} \Omega\) exclusive
\end{tabular} \\
\hline pulse output (solid state relay): & 22,23 (see connection diagram) \\
& \begin{tabular}{l} 
max. 230 V AC \\
max. 100 mA
\end{tabular} \\
pulse length: & \(0,02 \ldots 10 \mathrm{sec}\). \\
pulse or limit value: & adjustable \\
connection terminals: & 17,18 (see connection diagram)
\end{tabular}

\section*{Adjustment:}

The function set up has to be carried out by 3 front side push buttons and the display (see at page 04-10 and 04-11).

\section*{Display:}
\begin{tabular}{ll} 
LC-display: \(2 \times 8\) digits & matrix-display for instantaneous value and parameterization \\
& - instantaneous flow \(\left(\mathrm{m}^{3} / \mathrm{h}\right.\) or \(\left.\mathrm{I} / \mathrm{s}\right)\) \\
& - min./ max. flow rate \\
& - current meter reading \\
& - menu navigation
\end{tabular}

\section*{Environmental conditions:}

Storage temperature: \(\quad-20 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(-10 \ldots+55^{\circ} \mathrm{C}\)
Isolation voltage:
\[
\begin{array}{ll}
1 \mathrm{kV} \text { eff. } 1 \mathrm{sec} . & \begin{array}{l}
\text { input }<->\text { output } \\
4 \mathrm{kV} \text { eff. } 1 \mathrm{sec} .
\end{array} \\
\begin{array}{l}
\text { auxiliary power }<-> \\
\text { in-, output }
\end{array} \\
4 \mathrm{kV} \text { eff. } 1 \mathrm{sec} . & \text { output }<->\text { output }
\end{array}
\]

\section*{Auxiliary power:}
Wide range: \(\quad\)\begin{tabular}{ll} 
& \(24 \ldots 250 \mathrm{~V} \mathrm{DC}\) \\
& \(90 \ldots 253 \mathrm{~V} \mathrm{AC}\) \\
& \(<4 \mathrm{~W}\)
\end{tabular}

Influence of auxiliary power: \(\quad<0,1 \%\)

\section*{Characteristics of transmission:}
\begin{tabular}{ll} 
Linearity error: & \(<0,2 \%\) \\
Temperature error: & \(<0,5 \%\) \\
Load influence I: & \begin{tabular}{l}
\(<50 \mathrm{ppm}\) \\
of final value
\end{tabular} \\
Load influence U: & \(<0,2 \%\) \\
at \(1 \mathrm{k} \Omega\) load \\
Setting time: & \(<500 \mathrm{msec}\).
\end{tabular}

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & 2014/30/EU* \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during
HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 30 housing
Mounting rail fixed according to
EN 50022-35 x 6,2 mm
Width: \(\quad 72 \mathrm{~mm}\)
Weight: \(\quad 250 \mathrm{~g}\)
Material: Polycarbonate (PC)
+ ABS
Approval: CE
Connection: screw clamps
\(0,2 \ldots 2,5 \mathrm{~mm}^{2}\)
Please check parameter before initial operation!
Ordering information: Type: DFA 2.00 GW wide range

\section*{FEATURES}
- Input:

2-wire initiator (Namur) or potential free contact
optional: second input for addition/ subtraction
■ Output:
Current (0)4... 20 mA and/ or
Voltage 0(2)... 10 V
optional:
Switching outputs with integrated frequency divider or limit switch
■ Pulse conversion 0,01 Hz... 10 kHz
- Parameterization, handling and actual value indication by display
■ Galvanic 3-way isolation of 4 kV

\section*{FUNCTION}

The DFA8 is converting an input signal generated by various frequency sensors into a standard current and voltage signal.
He is used for the flow rate measurement, logging of rotation speed, monitoring of motors etc.
The parameterization is made by the 2 front side push-buttons and indicated by display.
The 4-digit actual value display is free scalable. The actual flow through volume, the minimal or maximum measuring value of the past 60 minutes or 24 hours can be displayed.


The DFA 8.30 TW has 2 switching outputs, used as frequency divider or limit switch.
A second input which can be used as an adder or subtractor is available with the DFA 8.40 TW additional to the 2 switching outputs.


OVERVIEW-MENU FOR DFA 8.00 TW/ DFA 8.30 TW


Legend:
selection
next *1 There is a constant change between the actual indicated value and the dispay of the menu item.

\section*{OVERVIEW-MENU FOR DFA 8.40 TW}
description

actual value at input 1 as Hz .
minimal occured value at input 1 since last call up of this programm (up to max. 60 min .) or smallest measurand since 24 h if last call up is greater than 60 min .
maximal occured value at input 1 since last call up of this programm (up to max. 60 min .) or biggest measurand since 24 h if last call up is greater than 60 min .
actual value at input 2 as Hz .
minimal occured value at input 2 since last call up of this programm (up to max. 60 min .) or smallest measurand since 24 h if last call up is greater than 60 min .
maximal occured value at input 2 since last call up of this programm (up to max. 60 min .) or biggest measurand since 24 h if last call up is greater than 60 min .

Limit switch:
setpoint on: by overtravel of SP.on
relay/ transistor turns on.

Limit switch:
setpoint off: by underrun of SP.on
relay/ transistor turns off.
The hysteresis is the difference between SP.on and SP.oF.
displayed for
2 seconds


\section*{PARAMETERIZING-MENU}

to be continued on next page (04-17)

\footnotetext{
\({ }^{* 1}\) There is a constant change between the actual indicated value and the dispay of the menu item.
}

Digital
Frequency Analog Transducer

\section*{PARAMETERIZING-MENU}

change value:

define decimal place:

delete decimal place:

delete positions:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline preset value & go to
position position 2 & position 2 changeable & change position 2 & change position 2 with \(\uparrow\) to & confirm value & space saved, value: „9" & Save and back \\
\hline G219 & & E19 & ( \(\rightarrow\) & 블를 & & \[
9
\] & \\
\hline
\end{tabular}

\section*{Details of operation:}

The displayed position gets changed with the push-button (1). Values such as \((0)\) to \(\sqrt[9]{ }\), minus \(\square\), comma \(\square\) and space \(\square\) are possible.

\section*{Legend:}

2 Digit on display blinks.
1 Display of comma.
\(\square\) space
(1) selection
() confirm

\section*{Input:}

Namur EN 50227 or potential free contact:
max. current:
max. voltage:
\(I_{\text {max }}=8 \mathrm{~mA}\)
\(\mathrm{U}_{\text {max }}=8 \mathrm{~V}\)
connection input 1 :
terminal 4-, \(5+\) (door installation: 3-, \(4+\) )
connection input 2 (optional)
terminal \(6-, 3+\) (door installation: \(5-, 6+\) )

Output:


\section*{Adjustment:}

The function set up has to be carried out by front side push-button and display (see at Page 04-14).

\section*{Display:}

4-digit LC-display with 4 bargraphs to indicate the relay status of inputs and outputs


1: input 1
2: input 2
3: status pulse output
4: status output limit value

\section*{DFA 8.00 TW}

Connection diagram:


DFA 8.30 TW/ DFA 8.40 TW


\section*{Schuhmann GmbH \& Co. KG}

Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 . . .+70^{\circ} \mathrm{C}\)
Operating temperature: \(0 \ldots . .55^{\circ} \mathrm{C}\)
Isolation voltage: \(\quad 4 \mathrm{kV}\) eff. 1 sec .
input-output-auxiliary voltage

\section*{Auxiliary power:}

Housing for top hat rail:
Wide range:
\[
\begin{aligned}
& 24 \ldots . .250 \mathrm{~V} \mathrm{DC} \\
& 90 \ldots . .253 \mathrm{~V} \mathrm{AC} \\
& <3 \mathrm{~W}
\end{aligned}
\]

Door installation:
Wide range:
\[
\begin{aligned}
& 24 \ldots . .250 \mathrm{~V} \mathrm{DC} \\
& 90 . . .253 \mathrm{~V} \mathrm{AC} \\
& <3 \mathrm{~W}
\end{aligned}
\]

\section*{Characteristics of transmission:}

Linearity error: \(\quad<0,1 \%\) of final value
Temperature error: \(<10 \mathrm{ppm} / \mathrm{K}\)

\section*{Directive:}

EMC Directive: 2014/30/EU*
Low Voltage Directive: 2014/35/EU
*minimum deviations possible during
HF-radiation influence
Housing for top hat rail:
Type of protection: IP 40 housing IP 10 clamps
Mounting rail fixed according to
\begin{tabular}{lc} 
& EN 50022-35 \(\times 6,2 \mathrm{~mm}\) \\
Width: & \(22,5 \mathrm{~mm}\) \\
Weight: & 210 g \\
Material: & Polyamide PA \\
Flammability class: & VO (UL94)
\end{tabular}
\begin{tabular}{ll} 
Approval: & CE \\
Connection: & screw clamps
\end{tabular}

Door installation:
Type of protection: IP 54 Front
Front frame: \(\quad 96 \times 48 \mathrm{~mm}\)
Installation depth: \(138,5 \mathrm{~mm}\)
Weight: \(\quad 290 \mathrm{~g}\)
Material: \(\quad\) PC/ ABS
Flammability class: Vo (UL94)
Approval: CE
Connection: plugg. screw clamps
\(0,14 \ldots, 5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.

Ordering information:
Type:
DFA 8.00 TW wide range housing analog output I and U
with limit switch, pulse output:
DFA 8.30 TW wide range door inst. analog output I and U relay output (changer) transistor output
with 2 inputs, limit switch, pulse output:
DFA 8.40 TW wide range door inst.
analog output I and U
relay output (changer)
transistor output

\section*{FEATURES}

■ 2 Inputs:
2-wire initiator (Namur) or potential free contact or optocoupler or reflecting light barrier or NPN/ PNP input
■ 2 transistor outputs: \(230 \mathrm{~V}, 100 \mathrm{~mA}\)
■ Impulse summator
- Signal multiplier

■ Pulse storage per channel
- Pulse duration adjustable

■ Galvanic 3-way isolation of \(1,5 \mathrm{kV}\)

\section*{FUNCTION}

The 2-channel Switching Amplifier enables the preparation of digital pulses. The preparation of pulses is used for various applications, e.g. determination of quantities, piece and event counting, supply of a sensor and processing for digital PLC-inputs.

The input signals are processed both with inductive or capacitive proximity switches and optoelectronic sensors. The following input signals can be processed: two-wire initiator according to EN 50227 (former DIN 19234) for NAMUR-sensors, reflecting light barriers, potential free contacts and sensors with transistor output.


The SI 5.20 GW can be compared with a pulse converter which prolongs the input pulses and prepares the signals. In function as an impulse summator the input pulses can be produced at the same time or temporally overlapping. The built-in microprocessor is able to store up to 100 input signals; thus, a protected feeding of the prepared signals is guaranteed. The inputs and outputs are galvanically isolated between each other and the auxiliary power.



Connection diagram:
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 14 \mathbb{Q} \\
& 15 \mathbb{Q}
\end{aligned}
\] & \multirow[t]{3}{*}{Auxiliary power} \\
\hline \[
\begin{aligned}
& 16 \mathbb{Q} \\
& 17 \mathbb{Q}
\end{aligned}
\] & \\
\hline \[
\begin{aligned}
& 18 \mathbb{Q} \\
& 19 \mathbb{Q}
\end{aligned}
\] & \\
\hline \[
\begin{array}{r}
\text { ־ } 20 \mathbb{Q} \\
21 \mathbb{Q} \\
22 \mathbb{Q} \\
23 \mathbb{Q}
\end{array}
\] & Output channel 1 \\
\hline \[
\text { ־ } 24 \mathbb{Q}
\] & Output channel 2 \\
\hline
\end{tabular}

Input channel 1 (channel 2):


3-wire PNP


3-wire NPN
 light barrier


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

Input:
\begin{tabular}{|c|c|c|}
\hline Transmitter & Short-circuit current & Switching point \\
\hline Namur & 8 mA & \(1,6 \mathrm{~mA}\) \\
\hline Reed contact & 8 mA & \(1,6 \mathrm{~mA}\) \\
\hline IR-transmitter & 5 mA & 1 mA , adjustable by front trimmer \\
\hline Transistor & 5 mA & 1 mA \\
\hline \multicolumn{2}{|c|}{ ( }
\end{tabular}

\section*{Output:}

Transistor outputs:
load: connection:

LED pulse-display at front side
max. 230 V AC/ DC, max. \(100 \mathrm{~mA} \mathrm{AC/} \mathrm{DC}\) see connection diagram

Adjustment:
Channel 1 Channel 2
display of output pulses
turn-switch for function selection
treshold switch for IR-transmitter

\begin{tabular}{|c|c|c|c|c|}
\hline S1/ S2 & Function & Wipe time & Pulse storage & Output \\
\hline 0 & output=input & no & without & \\
\hline 1 & switching amplifier & 50 ms & without & \\
\hline 2 & switching amplifier & 100 ms & without & \\
\hline 3 & switching amplifier & 300 ms & without & \\
\hline 4 & switching amplifier & 2000 ms & without & \\
\hline 5 & switching amplifier & 100 ms & with & \\
\hline 6 & switching amplifier & 300 ms & with & \\
\hline 7 & switching amplifier & 2000 ms & with & \\
\hline 8 & IN1 + IN2 & 50 ms & with & \\
\hline 9 & IN1 + IN2 & 100 ms & with & \\
\hline A & IN1 + IN2 & 300 ms & with & \\
\hline B & IN1 + IN2 & 2000 ms & with & \\
\hline C & IN1 + IN2 & 50 ms & with & inverse \\
\hline D & IN1 + IN2 & 100 ms & with & inverse \\
\hline E & IN1 + IN2 & 300 ms & with & inverse \\
\hline F & IN1 + IN2 & 2000 ms & with & inverse \\
\hline
\end{tabular}

When setting function to addition of the inputs (IN1 + IN2) both outputs run in parallel.
Thus, a signal multiplication can be generated also.

\section*{Environmental conditions:}
\(\begin{array}{ll}\text { Storage temperature: } & -40 \ldots+70^{\circ} \mathrm{C} \\ \text { Operating temperature: } & 10 \ldots 55^{\circ} \mathrm{C}\end{array}\)
Operating temperature.
Isolation voltage:
1,5 kV eff. 1 sec. \(1,5 \mathrm{kV}\) eff. 1 sec . \(1,5 \mathrm{kV}\) eff. 1 sec .

\section*{Auxiliary power:}

Wide range:
input/ output output 1/ output 2 auxiliary power
24... 250 V DC
\(90 . . .253 \mathrm{~V} \mathrm{AC}\)
\[
<3 \mathrm{~W}
\]

Influence of auxiliary power: \(\quad<0,1 \%\)

Characteristics of transmission:
min. input pulse duration: 6 msec .
Setting time: \(<200 \mathrm{msec}\).
Pulse storage per channel: 100 Impulses

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & 2014/30/EU* \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 20 housing IP10 clamps
Mounting rail fixed according to
EN \(50022-35 \times 6,2 \mathrm{~mm}\)
\begin{tabular}{ll} 
Width: & 72 mm \\
Weight: & 200 g \\
Material: & PC-ABS \\
Flammability class: & VO (UL 94) \\
Approval: & CE \\
Connection: & screw clamps \\
& \(\leq 2,5 \mathrm{~mm}^{2}\)
\end{tabular}

Type: SI 5.20 GW
wide range

\section*{FEATURES}

■ Input, max. 20 kHz:
2-wire proximity switch (NAMUR) or potential-free contact or reflecting light barrier or 24 V DC signal/ tacho generator
■ Output, simultaneously: 1 solid state relay (bipolar), 1 relay (changer)
- Parameterization without auxiliary power via PC-interface: - division/ multiplication factor - wipe time, inverse, memory, etc.

\section*{- Line monitoring}
- Galvanic 3-way isolation

\section*{FUNCTION}

The Frequency Divider IV 7.00 MW is being used for binary signal transmission out of control circuits into signal circuits.
The activation has to be carried out by a 2-wire proximity switch according to EN 50227 (NAMUR) or potential-free contacts. A reflecting light barrier or a 24 V DC signal/ tacho generator can also be used for this.
A division and a multiplication factor can be set by KALIB-Software. These values are also used to calculate ratios, e.g. 2/ 3.
Additional functions such as wipe time, starting characteristics, input filter, pulse memory and limits for short circuit or wire break detection can be set.


The simultaneous outputs can be parameterized separately and also be used as an alarm contact for wire break or short circuit.
The IV 7.00 MW has a solid state relay output (bipolar) and a relay output (1 changer). At higher frequencies the relay can be deactivated via KALIBSoftware.



Connection diagram:


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

\section*{Input:}

Namur EN 50227 or potential free contact or reflecting light barrier:
\begin{tabular}{ll} 
maximum current: & \(I_{\text {max }}=8 \mathrm{~mA}\) \\
maximum voltage: & \(U_{\text {max }}=8 \mathrm{~V}\)
\end{tabular}
min. impulse duration: \(\quad>25 \mu \mathrm{~s}\) (default filter 1 ms , changeable via KALIB-Software) connection: terminal \(3+, 4-\)
24 V DC signal/ tacho, connect.: terminal \(4+, 5-\)

\section*{Output:}
\begin{tabular}{|c|c|}
\hline Solid state relay output: load: connection: & \begin{tabular}{l}
bipolar \\
max. \(100 \mathrm{~V} / 50 \mathrm{~mA} / 400 \mathrm{~Hz}\) \\
terminal 7, 8
\end{tabular} \\
\hline Relay output: load: connection: & \begin{tabular}{l}
1 changer \\
max. 250 V AC/ 5 A \\
common 12, normally closed 10, normally open 11
\end{tabular} \\
\hline
\end{tabular}

\section*{Adjustment:}

The parameterization will be carried out for commissioning via KALIB-Software. For this you need a PC as well as the interface adapter USB2/ USB-Simulator with KALIB-Software.

Each output can be configured separately:
input filter:
off; 0,5-20 msec. frequency input filter (factory setting: 1 ms )
multiplication factor: \(\quad 1 \ldots 30000 \quad\) output \(=\) input \(*\) factor
division factor: \(\quad 1 . . .30000 \quad\) output \(=\) input \(/\) factor
wire break limits: \(\quad 10,00 \ldots 46,99 \% \quad\) adjustable in \(0,02 \%\) steps
short circuit limits: \(\quad 52,99 \ldots 94,99 \% \quad\) adjustable in \(0,02 \%\) steps
mode:
"wipe time ON:
*wipe time OFF:
*pulse memory:
extended functions:
off/ contin. pulse/ pulse contact*/ Namur wire break and short circuit/ pulse memory overflow (only relay)/ pulse failure/ impulse generator \(0,002 \ldots 30,000 \mathrm{sec}\). adjustable in 1 msec . steps
\(0,002 \ldots 30,000 \mathrm{sec}\). adjustable in 1 msec . steps
2... 10000 pulses
inverse operation, start state (on/ off), start time ( \(0 . . .30 \mathrm{sec}\).)
Display:
LED status: green, active input signals are in standard range, device ready for use green, flashing Namur wire br. or short circ./ pulse mem. overfl./ pulse failure
LED's output: yellow, active output active

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\) Operating temperature: \(0 . . .55^{\circ} \mathrm{C}\)
Isolation voltage:
\[
\begin{array}{ll}
1 \mathrm{kV} \text { eff. } 1 \mathrm{sec} . & \text { input/ output } \\
3,75 \mathrm{kV} \text { eff. } 1 \mathrm{sec} . & \text { auxiliary power }
\end{array}
\]

\section*{Auxiliary power:}
Wide range: \(\quad\)\begin{tabular}{ll} 
& \(24 \ldots 250 \mathrm{VDC}\) \\
& \(90 \ldots 253 \mathrm{~V} \mathrm{AC}\) \\
& \(<3 \mathrm{~W}\)
\end{tabular}

Influence of Aux. power: \(<0,1 \%\)

\section*{Directive:}

EMC Directive: 2014/30/EU*
Low Voltage Directive: 2014/35/EU
*minimum deviations possible during
HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 40 housing
IP 20 clamps
Mounting rail fixed according to
EN 50022-35 x 7,5mm
Width: \(\quad 12,5 \mathrm{~mm}\)
Weight: \(\quad 100 \mathrm{~g}\)
Material: Polyamide (PA)
Flammability class: Vo (UL94)
Approval: CE
Connection: pluggable screw clamps \(\leq 2 \times 2,5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.
\begin{tabular}{lll} 
Ordering information: & \begin{tabular}{l} 
Type: \\
Accessories:
\end{tabular} & \begin{tabular}{l} 
IV 7.00 MW \\
USB2/ USB-Simulator with \\
KALIB-Software
\end{tabular} \\
\end{tabular}

\section*{FEATURES}

■ Input, max. 20 kHz:
2-wire proximity switch (NAMUR) or potential-free contact or reflecting light barrier or 24 V DC signal/ tacho generator
■ Output, simultaneously: 1 optocoupler (max. 10 kHz ), 1 relay (changer)
- Parameterization without auxiliary power via PC-interface: - division/ multiplication factor - wipe time, inverse, memory, etc.

\section*{■ Line monitoring}
- Galvanic 3-way isolation

\section*{FUNCTION}

The Frequency Divider IV 7.10 MW is being used for binary signal transmission out of control circuits into signal circuits.
The activation has to be carried out by a 2-wire proximity switch according to EN 50227 (NAMUR) or potential-free contacts. A reflecting light barrier or a 24 V DC signal/ tacho generator can also be used for this.
A division and a multiplication factor can be set by KALIB-Software. These values are also used to calculate ratios, e.g. 2/ 3.
Additional functions such as wipe time, starting characteristics, input filter, pulse memory and limits for short circuit or wire break detection can be set.


The simultaneous outputs can be parameterized separately and also be used as an alarm contact for wire break or short circuit.
The IV 7.10 MW has an optocoupler (max. 10 kHz ) and a relay output (1 changer). At higher frequencies the relay can be deactivated via KALIB-Software.


\section*{Connection diagram:}


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

\section*{Input:}

Namur EN 50227 or potential free contact or reflecting light barrier:
\begin{tabular}{ll} 
maximum current: & \(I_{\text {max }}=8 \mathrm{~mA}\) \\
maximum voltage: & \(U_{\text {max }}=8 \mathrm{~V}\)
\end{tabular}
min. impulse duration: \(\quad>25 \mu \mathrm{~s}\) (default filter 1 ms , changeable via KALIB-Software) connection: terminal \(3+, 4\) -
24 V DC signal/ tacho, connect.: terminal \(4+, 5-\)

\section*{Output:}

Optocoupler output:
\begin{tabular}{ll}
\begin{tabular}{l} 
load: \\
connection:
\end{tabular} & \begin{tabular}{l} 
max. \(50 \mathrm{~V} / 50 \mathrm{~mA} /<10 \mathrm{kHz}\) \\
terminal \(7+, 8-\)
\end{tabular} \\
\hline Relay output: & 1 changer \\
load: & max. \(250 \mathrm{~V} \mathrm{AC/5} \mathrm{~A}\) \\
connection: & common 12, normally closed 10, normally open 11
\end{tabular}

\section*{Adjustment:}

The parameterization will be carried out for commissioning via KALIB-Software. For this you need a PC as well as the interface adapter USB2/ USB-Simulator with KALIB-Software.

Each output can be configured separately:
input filter:
off; 0,5-20 msec. frequency input filter (factory setting: 1 ms )
multiplication factor: \(\quad 1 . .30000 \quad\) output \(=\) input * factor
division factor: \(\quad 1 \ldots 30000 \quad\) output \(=\) input \(/\) factor
wire break limits: short circuit limits:
mode:
*wipe time ON:
*wipe time OFF:
*pulse memory:
extended functions:

> 10,00...46,99 \% adjustable in 0,02 \% steps

52,99...94,99 \% adjustable in 0,02 \% steps
off/ contin. pulse/ pulse contact*/ Namur wire break and short circuit/ pulse memory overflow (only relay)/ pulse failure/ impulse generator
0,002...30,000 sec. adjustable in 1 msec. steps
0,002...30,000 sec. adjustable in 1 msec . steps
2... 10000 pulses
inverse operation, start state (on/ off), start time ( \(0 . . .30\) sec.)
Display:
LED status: green, active input signals are in standard range, device ready for use
LED's output: yellow, active output active
green, flashing Namur wire br. or short circ./ pulse mem. overfl./ pulse failure

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\) Operating temperature: \(0 . . .55^{\circ} \mathrm{C}\)
Isolation voltage:
\[
\begin{array}{ll}
1 \mathrm{kV} \text { eff. } 1 \mathrm{sec} . & \text { input/ output } \\
3,75 \mathrm{kV} \text { eff. } 1 \mathrm{sec} . & \text { auxiliary power }
\end{array}
\]

Auxiliary power:
Wide range: \(\quad\)\begin{tabular}{ll} 
& \(24 \ldots 250 \mathrm{~V} \mathrm{DC}\) \\
& \(90 \ldots 253 \mathrm{~V} \mathrm{AC}\) \\
& \(<3 \mathrm{~W}\)
\end{tabular}

Influence of Aux. power: \(<0,1 \%\)

\section*{Directive:}

EMC Directive: 2014/30/EU*
Low Voltage Directive: 2014/35/EU
*minimum deviations possible during
HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 40 housing
\[
\text { IP } 20 \text { clamps }
\]

Mounting rail fixed according to
\[
\text { EN } 50022-35 \times 7,5 \mathrm{~mm}
\]

Width: \(\quad 12,5 \mathrm{~mm}\)
Weight: \(\quad 100 \mathrm{~g}\)
Material: \(\quad\) Polyamide (PA)
Flammability class: Vo (UL94)
Approval: CE
Connection: pluggable screw clamps \(\leq 2 \times 2,5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.
\begin{tabular}{lll}
\hline Ordering information: & \begin{tabular}{l} 
Type: \\
Accessories:
\end{tabular} & \begin{tabular}{l} 
IV 7.10 MW \\
USB2/ USB-Simulator with \\
KALIB-Software
\end{tabular} \\
\end{tabular}

\section*{FEATURES}

■ Input, max. 400 Hz :
2-wire proximity switch (NAMUR) or potential-free contact or reflecting light barrier or 24 V DC signal/ tacho generator
■ Output, simultaneously: 1 solid state relay (bipolar), 1 relay (changer)
- Adjustable via DIP switches:
- function
- pulse duration
- Parameterization without auxiliary power via PC-interface: - wipe time, inverse, memory, etc.

■ Galvanic 3-way isolation

\section*{FUNCTION}

The Switching Amplifier IV 5.00 MW is being used for binary signal transmission out of control circuits into signal circuits.
The activation has to be carried out by a 2 -wire proximity switch according to EN 50227 (NAMUR) or potential-free contacts. A reflecting light barrier or a 24 V DC signal/ tacho generator can also be used for this.
It is possible to specify different operating modes by the KALIB-Software, e.g. specific wipe times. Additional functions such as starting characteristics, input filter, pulse memory and limits for short circuit or wire break detection can be set.


The simultaneous outputs can be parameterized separately and also be used as an alarm contact for wire break or short circuit.
The change between pulse contact and continuous pulse is made via DIP-switch S1. The pulse duration can be changed with the DIP-switch S2 or the KALIB-Software.
The IV 5.00 MW has a solid state relay output (bipolar) and a relay output (1 changer). At higher frequencies the relay can be deactivated via DIP-switch S3 or the KALIB-Software.
Factory setting:
wipe pulse, duration: 0,1 sec., relay active.


Connection diagram:


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

\section*{Input:}

Namur EN 50227 or potential free contact or reflecting light barrier:
maximum current, voltage: \(\quad I_{\text {max }}=8 \mathrm{~mA} ; \mathrm{U}_{\text {max }}=8 \mathrm{~V}\)
min. impulse duration: \(\quad>25 \mu \mathrm{~s}\) (default filter 1 ms , changeable via KALIB-Software)
connection:
terminal \(3+, 4\) -
24 V DC signal/ tacho, connect.: terminal \(4+, 5\) -

\section*{Output:}
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
Solid state relay output: \\
Ioad:
\end{tabular} & bipolar \\
connection: & max. \(100 \mathrm{~V} / 50 \mathrm{~mA} / 400 \mathrm{~Hz}\) \\
\hline Relay output: & terminal 7,8 \\
\(\quad\) load: & 1 changer \\
connection: & max. \(250 \mathrm{~V} \mathrm{AC/5} \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{Adjustment:}
\begin{tabular}{|c|l|l|l|}
\hline Switch & Function & ON & OFF \\
\hline S1 & output & pulse contact & continuous pulse (1:1) \\
\hline S2 & output & pulse contact \(100 \mathrm{msec} .(\mathrm{S} 1=0 \mathrm{~N})\) & pulse contact 10 msec . (S1=0N) \\
\hline S3 & relay & relay active & relay not active \\
\hline S4 & function select. & DIP-switch values (S1...S3) active & \\
\hline
\end{tabular}

ON OFF


ON OFF
The extended parameterization is being made via PC and the interface adapter USB2/ USB-Simulator in connection with the KALIB-Software (DIP-switch \(S 4=0\) FF).
*1Each output can be configured separately (DIP-switch S4=0FF, DIP-switch S1...S3 without function): input filter:
wire break limits: short circuit limits: mode:
*wipe time ON/ OFF:
"pulse memory:
extended functions: off; 0,5-20 msec. frequency input filter (factory setting: 1 ms ) 10,00...46,99\% adjustable in 0,02 \% steps \(52,99 \ldots 94,99 \% \quad\) adjustable in \(0,02 \%\) steps off/ contin. pulse/ pulse contact*/ Namur wire break and short circuit/ pulse memory overflow (only relay)/ pulse failure/ impulse generator each \(0,002 \ldots 30,000 \mathrm{sec}\). adjustable in 1 msec . steps 2... 10000 pulses inverse operation, start state (on/ off), start time ( \(0 . . .30\) sec.)
Display:
\begin{tabular}{lll}
\hline LED status: & green, active & input signals are in standard range, device ready for use \\
& green, flashing & Namur wire br. or short circ./ pulse mem. overfl./ pulse failure \\
LED's output: & yellow, active & output active
\end{tabular}

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\) Operating temperature: \(0 \ldots . .55^{\circ} \mathrm{C}\)
Isolation voltage:
\[
\begin{array}{ll}
1 \mathrm{kV} \text { eff. } 1 \text { sec. } & \text { input/ output } \\
3,75 \mathrm{kV} \text { eff. } 1 \mathrm{sec} . & \text { auxiliary power }
\end{array}
\]

\section*{Auxiliary power:}
Wide range: \(\quad\)\begin{tabular}{l} 
24... 250 V DC \\
\\
\\
\\
\\
\\
\\
\(<0.253 \mathrm{~W}\)
\end{tabular}

Influence of Aux. power: \(<0,1 \%\)

\section*{Directive:}
\(\begin{array}{ll}\text { EMC Directive: } & \text { 2014/30/EU* } \\ \text { Low Voltage Directive: } & 2014 / 35 / E U\end{array}\)
*minimum deviations possible during
HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 40 housing
\[
\text { IP } 20 \text { clamps }
\]

Mounting rail fixed according to
\[
\begin{aligned}
& \text { EN } 50022-35 \times 7,5 \mathrm{~mm} \\
& 12,5 \mathrm{~mm} \\
& 100 \mathrm{~g} \\
& \text { Polyamide (PA) } \\
& \text { Vo (UL.94) } \\
& \text { CE } \\
& \text { plugg. screw clamps } \\
& \leq 2 \times 2,5 \mathrm{~mm}^{2}
\end{aligned}
\]

Width: \(\quad 12,5 \mathrm{~mm}\)
Weight: \(\quad 100 \mathrm{~g}\)
Material: \(\quad\) Polyamide (PA)
Flammability class: Vo (UL94)
Approval:
Connection: plugg. screw clamps

\section*{For safety reasons we recommend to} mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check switch position before initial operation!
\begin{tabular}{lll} 
Ordering information: & \begin{tabular}{l} 
Type: \\
Accessories:
\end{tabular} & \begin{tabular}{l} 
IV 5.00 MW \\
USB2/ USB-Simulator with \\
KALIB-Software
\end{tabular} \\
& & wide range \\
&
\end{tabular}

\section*{FEATURES}

■ Input, max. 400 Hz :
2-wire proximity switch (NAMUR) or potential-free contact or reflecting light barrier or 24 V DC signal/ tacho generator
■ Output, simultaneously: 2 relay (changer)
- Adjustable via DIP switches:
- function
- pulse duration
- Parameterization without auxiliary power via PC-interface: - wipe time, inverse, memory, etc.
- Galvanic 3-way isolation

\section*{FUNCTION}

The Switching Amplifier IV 5.02 MW is being used for binary signal transmission out of control circuits into signal circuits.
The activation has to be carried out by a 2 -wire proximity switch according to EN 50227 (NAMUR) or potential-free contacts. A reflecting light barrier or a 24 V DC signal/ tacho generator can also be used for this.
It is possible to specify different operating modes by the KALIB-Software, e.g. specific wipe times. Additional functions such as starting characteristics, input filter, pulse memory and limits for short circuit or wire break detection can be set.


The simultaneous outputs can be parameterized separately and also be used as an alarm contact for wire break or short circuit.
The change between pulse contact and continuous pulse is made via DIP-switch S1. The pulse duration can be changed with the DIP-switch S2 or the KALIB-Software.
The IV 5.02 MW has two relay outputs (changer). Relay 2 can be deactivated via DIP-switch S 3 or the KALIB-Software.

Factory setting:
wipe pulse, duration: 0,1 sec., relay 2 active.


Connection diagram:


Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. + 4971355056
E-mail: info@schuhmann-messtechnik.de
www.schuhmann-messtechnik.de

\section*{Input:}

Namur EN 50227 or potential free contact or reflecting light barrier:
maximum current, voltage: \(\quad I_{\text {max }}=8 \mathrm{~mA} ; \mathrm{U}_{\text {max }}=8 \mathrm{~V}\)
min. impulse duration: \(\quad>25 \mu \mathrm{~s}\) (default filter 1 ms , changeable via KALIB-Software)
connection: terminal \(3+, 4\) -
24 V DC signal/ tacho, connect.: terminal \(4+, 5\) -

\section*{Output:}
\begin{tabular}{ll}
\hline Relay output 1: & 1 changer \\
load: & max. \(250 \mathrm{~V} \mathrm{AC} / 5 \mathrm{~A}\) \\
connection: & common 7, normally closed 9, normally open 8 \\
\hline Relay output 2: & 1 changer \\
load: & max. \(250 \mathrm{~V} \mathrm{AC} / 5 \mathrm{~A}\) \\
connection: & common 12, normally closed 10, normally open 11
\end{tabular}

\section*{Adjustment:}
\begin{tabular}{|c|l|l|l|}
\hline Switch & Function & ON & OFF \\
\hline S1 & output & pulse contact & continuous pulse (1:1) \\
\hline S2 & output & pulse contact 100 msec. (S1=ON) & pulse contact 10 msec. (S1=ON) \\
\hline S3 & relay & relay \(1+2\) & only relay 1 \\
\hline S4 & function select. & DIP-switch values (S1...S3) active & \\
\hline
\end{tabular}

ON OFF


ON OFF
The extended parameterization is being made via PC and the interface adapter USB2/ USB-Simulator in connection with the KALIB-Software (DIP-switch S4=0FF).
*1Each output can be configured separately (DIP-switch S4=OFF, DIP-Switch S1...S3 without function): input filter:
wire break limits: short circuit limits: mode:
*wipe time ON/ OFF:
"pulse memory:
extended functions: off; 0,5-20 msec. frequency input filter (factory setting: 1 ms ) 10,00...46,99\% adjustable in 0,02 \% steps \(52,99 \ldots 94,99 \% \quad\) adjustable in \(0,02 \%\) steps off/ contin. pulse/ pulse contact*/ Namur wire break and short circuit/ pulse memory overflow (only relay 2)/ pulse failure/ impulse generator each \(0,002 \ldots 30,000 \mathrm{sec}\). adjustable in 1 msec . steps 2... 10000 pulses
inverse operation, start state (on/ off), start time ( \(0 . . .30\) sec.)
Display:
\begin{tabular}{lll}
\hline LED status: & green, active & input signals are in standard range, device ready for use \\
& green, flashing & Namur wire br. or short circ./ pulse mem. overfl./ pulse failure \\
LED's output: & yellow, active & output active
\end{tabular}

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\) Operating temperature: \(0 \ldots . .55^{\circ} \mathrm{C}\)
Isolation voltage:
\[
\begin{array}{ll}
1 \mathrm{kV} \text { eff. } 1 \text { sec. } & \text { input/ output } \\
3,75 \mathrm{kV} \text { eff. } 1 \mathrm{sec} . & \text { auxiliary power }
\end{array}
\]

\section*{Auxiliary power:}
Wide range: \(\quad\)\begin{tabular}{l}
\(24 \ldots 250 \mathrm{~V} \mathrm{DC}\) \\
\\
\\
\\
\\
\\
\\
\\
\\
\end{tabular}

Influence of Aux. power: \(<0,1 \%\)

\section*{Directive:}
\(\begin{array}{ll}\text { EMC Directive: } & \text { 2014/30/EU* } \\ \text { Low Voltage Directive: } & 2014 / 35 / E U\end{array}\)
*minimum deviations possible during
HF-radiation influence
\begin{tabular}{lll|}
\hline Ordering information: & \begin{tabular}{l} 
Type: \\
Accessories:
\end{tabular} & \begin{tabular}{l} 
IV 5.02 MW \\
USB2/ USB-Simulator with \\
KALIB-Software
\end{tabular} \\
\hline
\end{tabular}

\section*{Mounting details:}
\(\begin{array}{ll}\text { Housing for top hat rail } \\ \text { Type of protection: } & \text { IP } 40 \text { housing } \\ & \text { IP } 20 \text { clamps }\end{array}\)
Mounting rail fixed according to
EN \(50022-35 \times 7,5 \mathrm{~mm}\)
Width: \(\quad 12,5 \mathrm{~mm}\)
Weight: \(\quad 100 \mathrm{~g}\)
Material: \(\quad\) Polyamide (PA)
Flammability class: Vo (UL94)
Approval:
Connection:
CE
plugg. screw clamps \(\leq 2 \times 2,5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check switch position before initial operation!

\section*{FEATURES}

■ Input, max. \(400 \mathrm{~Hz} /\) at continuous pulse max. 10 kHz : 2-wire proximity switch (NAMUR) or potential-free contact or reflecting light barrier or 24 V DC signal/ tacho generator
■ Output, simultaneously: 1 optocoupler (max. 10 kHz ), 1 relay

■ Adjustable via DIP switches:
- function
- pulse duration

\section*{- Parameterization without} auxiliary power via PC-interface:
- wipe time, inverse, memory, etc.

■ Galvanic 3-way isolation

\section*{FUNCTION}

The Switching Amplifier IV 5.10 MW is being used for binary signal transmission out of control circuits into signal circuits.
The activation has to be carried out by a 2 -wire proximity switch according to EN 50227 (NAMUR) or potential-free contacts. A reflecting light barrier or a 24 V DC signal/ tacho generator can also be used for this.
It is possible to specify different operating modes by the KALIB-Software, e.g. specific wipe times. Additional functions such as starting characteristics, input filter, pulse memory and limits for short circuit or wire break detection can be set.


The simultaneous outputs can be parameterized separately and also be used as an alarm contact for wire break or short circuit.
The change between pulse contact (max. 400 Hz ) and continuous pulse (max. 10 kHz ) is made via DIPswitch S1. The pulse duration can be changed with the DIP-switch S2 or the KALIB-Software.
The IV 5.10 MW has an optocoupler (max. 10 kHz ) and a relay output ( 1 changer). At higher frequencies the relay can be deactivated via DIP-switch S3 or the KALIB-Software.
Factory setting:
wipe pulse, duration: 0,1 sec., relay active.


Connection diagram:


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

\section*{Input:}

Namur EN 50227 or potential free contact or reflecting light barrier:
maximum current, voltage: \(\quad I_{\text {max }}=8 \mathrm{~mA} ; \mathrm{U}_{\text {max }}=8 \mathrm{~V}\)
min. impulse duration: \(\quad>25 \mu \mathrm{~s}\) (default filter 1 ms , changeable via KALIB-Software)
connection: terminal \(3+, 4\) -
24 V DC signal/ tacho, connect.: terminal \(4+, 5\) -

\section*{Output:}

Optocoupler output:
load:
connection:
Relay output:
load:
connection:
\begin{tabular}{|c|l|l|l|}
\hline Switch & Function & ON & OFF \\
\hline S1 & output & pulse contact & continuous pulse (1:1) \\
\hline S2 & output & pulse contact 100 msec. (S1=ON) & pulse contact 10 msec. (S1=ON) \\
\hline S3 & relay & relay active & relay not active \\
\hline S4 & function select. & DIP-switch values (S1...S3) active & \\
\hline
\end{tabular}

ON OFF
\begin{tabular}{|c|c|c|c|}
\hline Switch & Function & ON & OFF \\
\hline S1 & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{KALIB-Software values active*1, DIP - switch S1...S3 without function.}} \\
\hline S2 & & & \\
\hline S3 & & & \\
\hline S4 & function select. & & KALIB-Software values active \\
\hline
\end{tabular}

ON OFF
The extended parameterization is being made via PC and the interface adapter USB2/ USB-Simulator in connection with the KALIB-Software (DIP-switch \(S 4=0\) FF).
*1Each output can be configured separately (DIP-switch S4=OFF, DIP-switch S1...S3 without function): input filter:
wire break limits:
short circuit limits:
mode:
*wipe time ON/ OFF:
"pulse memory:
extended functions: off; 0,5-20 msec. frequency input filter (factory setting: 1 ms ) 10,00...46,99\% adjustable in 0,02 \% steps \(52,99 \ldots 94,99 \% \quad\) adjustable in \(0,02 \%\) steps off/ contin. pulse/ pulse contact*/ Namur wire break and short circuit/ pulse memory overflow (only relay)/ pulse failure/ impulse generator each \(0,002 \ldots 30,000 \mathrm{sec}\). adjustable in 1 msec . steps 2... 10000 pulses
inverse operation, start state (on/ off), start time ( \(0 . . .30 \mathrm{sec}\).)
Display:
\begin{tabular}{lll}
\hline LED status: & green, active & input signals are in standard range, device ready for use \\
& green, flashing & Namur wire br. or short circ./ pulse mem. overfl./ pulse failure \\
LED's output: & yellow, active & output active
\end{tabular}

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(0 \ldots . . .55^{\circ} \mathrm{C}\)
Isolation voltage:
\[
\begin{array}{ll}
1 \mathrm{kV} \text { eff. } 1 \text { sec. } & \text { input/ output } \\
3,75 \mathrm{kV} \text { eff. } 1 \mathrm{sec} . & \text { auxiliary power }
\end{array}
\]

\section*{Auxiliary power:}
\begin{tabular}{ll} 
Wide range: & \begin{tabular}{l}
\(24 \ldots 250 \mathrm{~V} \mathrm{DC}\) \\
\\
\\
\\
\\
\\
\\
\\
\\
\(<0 . \ldots 253 \mathrm{~W}\)
\end{tabular}
\end{tabular}

Influence of Aux. power: < 0,1 \%

\section*{Directive:}
\(\begin{array}{ll}\text { EMC Directive: } & \text { 2014/30/EU* } \\ \text { Low Voltage Directive: } & 2014 / 35 / \text { EU }\end{array}\)
*minimum deviations possible during
HF-radiation influence
\begin{tabular}{llll} 
Ordering information: & \begin{tabular}{l} 
Type: \\
Accessories:
\end{tabular} & \begin{tabular}{l} 
IV 5.10 MW \\
USB2/ USB-Simulator with \\
KALIB-Software
\end{tabular} \\
\hline
\end{tabular}

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 40 housing
\[
\text { IP } 20 \text { clamps }
\]

Mounting rail fixed according to
\[
\text { EN } 50022-35 \times 7,5 \mathrm{~mm}
\]

Width: \(\quad 12,5 \mathrm{~mm}\)
Weight: \(\quad 100 \mathrm{~g}\)
Material: \(\quad\) Polyamide (PA)
Flammability class: V0 (UL94)
Approval:
Connection: plugg. screw clamps \(\leq 2 \times 2,5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a
distance of approx. 5 mm to each other.
Please check switch position before initial operation!
\begin{tabular}{|c|c|c|c|c|c|}
\hline Title & Specification & \begin{tabular}{l}
PC- \\
Inter- \\
face
\end{tabular} & Available designs & Auxiliary power & Page \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
SIMULATOR \\
current and voltage transmitter for testing and replication of 2-wire transmitters, potentiometer simulation up to 1000 ohms
\end{tabular}} \\
\hline USB-Simulator & \begin{tabular}{l}
\[
\begin{array}{ll}
\text { input (metering): } & -20 \ldots 0 \ldots+20 \mathrm{~mA} /-10 \ldots 0 \ldots+10 \mathrm{~V} \\
\text { output (simulation): } & 0 \ldots 20 \mathrm{~mA} \text { active } \\
& 0 \ldots 20 \mathrm{~mA} \text { passive } \\
& 0 \ldots 10 \mathrm{~V} \text { active }
\end{array}
\] \\
Interface for all parameterizable Schuhmann products, incl. measuring lines and case.
\end{tabular} & X & & & 05-01 \\
\hline Simulator 90 & hand-held housing (incl. accu, measuring lines and mains adapter) & & & & 05-03 \\
\hline Case for Simulator 90 & specially designed compartment for the Simulator 90 and the mains adapter & & & & 05-03 \\
\hline
\end{tabular}

\section*{SETPOINT ADJUSTER}
front side push-buttons, parameterizable, galvanic 2-way isolation of 4 kV
\begin{tabular}{|c|c|c|c|c|c|}
\hline SE 30.00 GW & \begin{tabular}{l}
LCD for setpoint/ parameters \\
output: \(\quad 0 . . .20 \mathrm{~mA}\) active \\
0... 20 mA passive \\
0... 10 V active \\
input: \(2 x\) potential free contact for setpoint up/ down
\end{tabular} & X & G 22,5 & 24... 250 V DC, 90... 253 V AC & 05-05 \\
\hline SE 30.24 GW & \begin{tabular}{l}
LCD for setpoint/ parameters \\
output: \(\quad 0 . . .20 \mathrm{~mA}\) active \\
0... 20 mA passive \\
\(0 . . .10 \mathrm{~V}\) active \\
input: \(2 \times 24 \mathrm{~V}\)-signal for setpoint up/ down
\end{tabular} & X & G 22,5 & 24... 250 V DC, 90... 253 V AC & 05-05 \\
\hline
\end{tabular}

\footnotetext{
* Designs: \(\quad G=\) housing,
\(T=\) housing for door installation,
\(E=\) eurocard
}
3) wairany

\section*{FEATURES}

\section*{■ Simultation of}
- Current: 0... 20 mA
active or passive
- Voltage: 0... 10 V
- Metering
- Current -20...0...+20 mA
- Voltage -10...0...+10 V

■ USB2 Interface function: interface for parameterizable Schuhmann products
- Galvanic 3-way isolation of 500 V
■ Including USB-connecting lines, case and measuring lines

\section*{FUNCTION}

The universal measurement- and test equipment USB-Simulator is designed for the technician on site who has to simulate and meter current and voltage.
The unit is being operated via the usb port of a PC or notebook.
The operation is carried out by the KALIB-Software.
Caution: KALIB-Software and the USB-Driver have to be installed before the adapter will be connected to the PC.
To avoid damage to the simulator, first select function, then connect the measuring lines.


The range of application is divided as follows:

\section*{- Current or voltage transmitter:}

For the calibration and testing of loops and transducers.

\section*{- Voltmeter and amperemeter:}

With a resolution of \(0,1 \mathrm{~V}\) respectively \(0,1 \mathrm{~mA}\), measurements can be made directly on measuring loops or devices to be checked.
- USB2 Interface functionality:

The USB-Simulator can be used instead of the USB2 Interface for all parameterizable Schuhmann products.
Overview: www.schuhmann-messtechnik.de


\section*{Connection diagram:}



USB-Simulator incl. USB connecting cables, case and measuring lines

\section*{Schuhmann GmbH \& Co. KG \\ Römerstraße 2 \\ D-74363 Güglingen \\ Tel. +4971355056 \\ E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de}

\section*{Function:}

All output values are being selected by KALIB-Software.

\section*{Input:}

USB interface for the
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Directly fed by PC:}} \\
\hline & \\
\hline auxiliary power: & 5 V DC \\
\hline current consumption: & max. 300 mA \\
\hline protocol: & USB 2.0 B \\
\hline \multicolumn{2}{|l|}{Measuring inputs:} \\
\hline Current: & -20...0...+20 mA \\
\hline Voltage: & -10...0...+10 V \\
\hline
\end{tabular}

Output:
USB interface for the connection
with Schuhmann devices:
\begin{tabular}{ll} 
Current active: & \(0 \ldots 21 \mathrm{~mA}\) \\
Current passive: & \(0 \ldots 21 \mathrm{~mA}\) \\
Voltage: & \(0 \ldots 10,5 \mathrm{~V}\)
\end{tabular}

Voltage:
\(0.10,5 \mathrm{~V}\)
Display:
\begin{tabular}{lll} 
LED USB RDY: & green, active & \begin{tabular}{l} 
USB communication with the PC in order (driver loaded) \\
data sent between PC and device (USB 1) or between \\
the device and the unit to be parameterized (USB 2)
\end{tabular} \\
LED Sim. RUN: & green, active & \begin{tabular}{l} 
simulator on, input/ output active
\end{tabular} \\
LED Sim. ERR: red, active & error at the output signal (overcurrent/ wire break) \\
Included in delivery: &
\end{tabular}

\section*{Included in delivery:}

USB-Simulator
PC-cable: USB-cable type A/Mini-B (length approx. 2 m)
Device-cable: mini-USB-cable type A/B (length approx. 2 m )
Case
Measuring lines
Software:
KALIB-Software for parameterization
USB-driver suitable for Windows 8, 8.1, 10 in 32- and 64-bit


\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(10 . . .55^{\circ} \mathrm{C}\)
Isolation voltage:
500 V eff. 1 sec. input/ output/ USB 1/ USB 2

\section*{Auxiliary power:}

5 V DC from PC via USB-cable

\section*{Accuracy:}
\(\begin{array}{ll}\text { Input error (U/ I): } & <0,2 \% \\ \text { Output error (U/I): } & <0,2 \%\end{array}\)

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & 2014/30/EU* \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
* minimum deviations possible during HF-radiation influence

\section*{Mounting details:}
\begin{tabular}{ll} 
Dimensions: & \(105 \times 65 \times 39 \mathrm{~mm}\) \\
Weight: & 120 g \\
Material: & ABS \\
Flammability class: & UL 94 HB \\
Approval: & CE \\
Connection: & safety socket 4 mm \\
& USB-cable
\end{tabular}

\section*{Ordering information:}

\section*{Type:}

\section*{USB-Simulator}
incl. USB connecting cables, case, measuring lines

\section*{FEATURES}
- Simultation of:
- Current: 0... 22 mA
- Voltage: \(0 . . .11 \mathrm{~V}\)
- 2-wire transmitter 4... 20 mA
- Potentiometer up to approx. \(1000 \Omega\)
- Metering:
- Current 0... 100 mA
- Voltage 0... 50 V
- 2-wire transmitter 4... 20 mA

■ Incl. mains adapter, accumulator and measuring lines

\section*{FUNCTION}

The universal hand-held Simulator is made for technicians to measure and simulate currents, voltages and resistances on-site.

The device has a replaceable fuse to prevent overcurrent damage.

Caution: To avoid damage to the simulator, first select function, then connect the measuring lines.


The range of application is divided as follows:

\section*{- Current or voltage transmitter:}

For the calibration and testing of loops and transducers.

\section*{- Voltmeter and amperemeter:}

With a resolution of \(0,1 \mathrm{~V}\) respectively \(0,1 \mathrm{~mA}\), measurements can be made directly on measuring loops or devices to be checked.

\section*{- 2-wire simulator (4... 20 mA ):}

The Simulator can be used instead of a 2-wire transmitter, in order to control or adjust the measuring circuit.
- Testing of 2-wire transmitter:

The device generates a voltage of approx. 13 V , current limiting can be adjusted by a potentiometer, the current output ( \(4 \ldots 20 \mathrm{~mA}\) ) appears on the LCD-display.

\section*{- Simulation of a potentiometer transmitter:}

The internal 10-step potentiometer is switched on the sockets and the device can be used as an potentiometer up to approx. \(1000 \Omega\).

\section*{000}


\section*{Function:}

All output values are being adjusted by the 10-step potentiometer P1.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Appliance} & \multirow[b]{2}{*}{Range} & \multirow[b]{2}{*}{Accuracy} & \multicolumn{2}{|l|}{Switch setting} & \multicolumn{3}{|l|}{Connecting socket} \\
\hline & & & & & black & red & yellow \\
\hline current transmitter & \[
\begin{gathered}
0 \ldots . .22 \mathrm{~mA} \\
\max .600 \Omega
\end{gathered}
\] & 0,5 \% & current & transmit & - & + & \\
\hline voltage transmitter & \[
\begin{gathered}
0 . . .11 \mathrm{~V} \\
\min .10 \mathrm{k} \Omega
\end{gathered}
\] & 1 \% & voltage & transmit & - & + & \\
\hline simulation of a ( \(4 \ldots 20 \mathrm{~mA}\) ) 2-wire transmitter & \[
\begin{gathered}
0 \ldots 22 \mathrm{~mA} \\
10 \ldots 30 \mathrm{~V}
\end{gathered}
\] & 2 \% & 2-wire & 2-wire & - & + & \\
\hline testing of a 2-wire transmitter (Poti 0... 100 \%) & \[
\begin{array}{|c}
\hline \max .22 \mathrm{~mA} \\
13 \mathrm{~V}
\end{array}
\] & 2 \% & current & transmit & - & + & \\
\hline current measuring & \[
\begin{gathered}
0 \ldots . .100 \mathrm{~mA} \\
\mathrm{R}_{\mathrm{i}}=30 \Omega
\end{gathered}
\] & 0,5 \% & current & \[
\begin{array}{|c|}
\text { measu- } \\
\text { ring }
\end{array}
\] & - & + & \\
\hline voltage measuring & \[
\begin{gathered}
0 \ldots 50 \mathrm{~V} \\
R_{i}=100 \mathrm{k} \Omega
\end{gathered}
\] & 1 \% & voltage & \[
\begin{gathered}
\text { measu- } \\
\text { ring }
\end{gathered}
\] & - & + & \\
\hline simultation of a potentiometer transmitter, 3-wire & \begin{tabular}{l}
approx. \\
15... \(1015 \Omega\)
\end{tabular} & - & any & OFF/Poti & beginning CCW & wiper S & \[
\begin{aligned}
& \text { end } \\
& \text { CW }
\end{aligned}
\] \\
\hline
\end{tabular}

The unit is equipped with an replaceable safety fuse ( 200 mA ) to avoid damage during current measuring.
The included mains adapter is used to charge the accu as well as for possible supply via grid energy. If the accu is almost discharged, the display shows "BAT". The charging is being indicated by integrated LED at the side. Charging time for the accumulator is approx. 15 hours (Simulator switched off). The integrated current and voltage limitation prevents accu from overloading.

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(\quad 10 \ldots . .55^{\circ} \mathrm{C}\)

\section*{Auxiliary power:}

12 V DC from: mains adapter 230VAC/ 12VDC
or \(\quad\) NiMH-accu \(9 \mathrm{~V}, \geq 100 \mathrm{mAh}\)
or battery 9 V (not included)

\section*{Caution: do not plug in mains adapter at battery operation!}
\begin{tabular}{|l|c|c|}
\hline Operating time at & Accu (100 mAh) & Battery \\
\hline \(20 \mathrm{~mA}, \operatorname{load} 300 \Omega\) & 4 h & 16 h \\
\hline \(20 \mathrm{~mA}, \operatorname{load} 600 \Omega\) & 2 h & 8 h \\
\hline \(10 \mathrm{~V}, \operatorname{load} 50 \mathrm{k} \Omega\) & 16 h & 64 h \\
\hline
\end{tabular}

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & \(2014 / 30 / E U^{*}\) \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during HF-radiation influence

\section*{Ordering information:}

Characteristics of transmission:
Transmission error: \(<0,12 \%\)
Linearity error: \(\quad<0,5 \%\)

Linearity error 2-wire: \(<2 \%\)
Temperature error: \(<100 \mathrm{ppm} / \mathrm{K}\)
Load influence \(\mathrm{I}: \quad<50 \mathrm{ppm}\)
of final value
\(<0,5 \%\)
at \(1 \mathrm{k} \Omega\) load
\(<50 \mathrm{msec}\).

\section*{Mounting details:}
\begin{tabular}{ll} 
Dimensions: & \(145 \times 79 \times 39 \mathrm{~mm}\) \\
Weight: & 300 g (incl. accu) \\
Material: & ABS \\
Flammability class: & UL 94 HB \\
Approval: & CE \\
Connection: & safety socket 4 mm
\end{tabular}

Simulator incl. mains adapter, accumulator and measuring lines

\section*{Schuhmann GmbH \& Co. KG}

\section*{Römerstraße 2}

D-74363 Güglingen
Tel. + 4971355056
Fax + 4971355355
www.schuhmann-messtechnik.de

\section*{Type: \\ Simulator \\ incl. mains adapter, accumulator measuring lines}

\section*{FEATURES}

■ Outputs simultaneous: Current 0(4)... 20 mA active or passive (loop-powered)
Voltage 0(2)... 10 V
■ Front side operation, digitally adjustable 0...100,0 \% or alternatively controlled via external signals (24 V DC/ contact)
- Parameterization without auxiliary power via PC-interface
■ Galvanic 2-way isolation of 4 kV between auxiliary power

\section*{FUNCTION}

The devices of the SE 30 series serve as a setpoint adjuster.
A simultaneously current- (active and passive) or voltage output signal is available.
The adjustment respectively a change of the setpoint at the output is carried out by front pushbuttons or with the USB2 interface/ USB-Simulator in connection with the KALIB-Software.
Alternatively, external control inputs for changing the specification of the setpoint can be used. This allows, for example, the control of the SE 30 series by a PLC.


SE 30.00 GW: potential-free contacts SE 30.24 GW: 24 V DC control pulse inputs
With the KALIB-Software, all parameters and in addition, the functions of external signals (saw tooth/ limit) are adjustable.
The digital adjustment is carried out in steps starting with \(0,1 \%\). So the selection of the actuator and actuating element to the required output values is easy.
The 4-digit setpoint display is free scalable.
Factory setting:
\(0,0 \ldots 100,0 \%\) display \(\triangleq 4 . . .20 \mathrm{~mA}\) output.



OVERVIEW-MENU

\(-1 \ldots+105\)
(comma
free settable)
\(-1 \ldots+105\)
(comma
(comma
free settable)
\(-999 \ldots+9999\)
(comma
free settable)
- 999 ... +9999
(comma
free settable)
\(1 \ldots+9999\)


\footnotetext{
\({ }^{* 1}\) There is a constant change between the actual indicated value and the display of the menu item.
}

define decimal place:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline previous value & confirm position 1 & position 1 unchanged & change position 2 & select comma & confirm comma & "0" with selected & confirm value & value changed
to „0,2" & save and back \\
\hline  & \[
\text { (4) } \rightarrow
\] &  &  & 1 & &  & &  & \\
\hline
\end{tabular}
delete decimal place:

delete positions:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline previous value & \[
\begin{aligned}
& \text { go to } \\
& \text { position } 2
\end{aligned}
\] & \begin{tabular}{l}
position 2 \\
changeable
\end{tabular} & change position 2 & value changed to „, " & confirm value & space saved, value: „9" & save and back \\
\hline \[
\text { 8I } 19
\] & &  &  & \[
8 \varepsilon^{2}-9
\] & - & - & \\
\hline
\end{tabular}

\section*{Operating instructions:}

The displayed position gets changed with the push-button \(\uparrow\).
Values such as \(\square\) to \(\boxed{9}\), minus \(\square\), comma \(\square[\square]\) and space (end of input) \(\square\) are possible.
Use the push-button to confirm the actual position and go to the next or return to the next menu item after changing the last position. To abort, push and hold the button \(\leqslant\) longer.

\section*{Legend:}
(2) number blinks on display
- minus blinks on display
(comma-representation)
\(\square\) space (blank position)
(1) selection
- confirm

SE 30.00 GW
SE 30.24 GW

\section*{Connection diagram:}


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

\section*{Input:}

Switching inputs to control the external setpoint.
S1: Up S2: Down
\begin{tabular}{ll} 
Potential free contact: & SE 30.00 GW \\
\(24 \mathrm{~V} \mathrm{DC} \mathrm{control} \mathrm{input:}\) & SE 30.24 GW \\
Min. impulse duration: & \(>10 \mathrm{msec}\).
\end{tabular}

\section*{Output:}
\begin{tabular}{|c|c|c|}
\hline I: load-independent DC current: connection: or & 0(4)... 20 mA terminal 9 -, \(10+\) & permissible load max. \(500 \Omega\) \\
\hline loop-powered DC current: connection: & \(0(4) \ldots 20 \mathrm{~mA}\) terminal 13-, 14 + & max. permissible voltage 30 V \\
\hline U: Ioad-independent DC voltage: connection: & \[
\begin{aligned}
& 0(2) . . .10 \mathrm{~V} \\
& \text { terminal } 11-, 12+
\end{aligned}
\] & \[
\begin{aligned}
\text { permissible load } & \geq 3 \mathrm{k} \Omega \text { simultaneous } \\
& \geq 1 \mathrm{k} \Omega \text { exclusive }
\end{aligned}
\] \\
\hline
\end{tabular}

The maximum limits for current- and voltage output are fixed at 21 mA respectively \(10,5 \mathrm{~V}\).

\section*{Adjustment:}

Output value is adjustable with the push-buttons:


The parameterization can be carried out for commissioning alternatively via the KALIB-Software. For this you need a PC and the interface adapter USB2/ USB-Simulator with KALIB-Software. It can be set the same parameters as also on display and in addition, the functions of external signals (saw tooth/ limit) are adjustable.
Examples of parameterization (see page 05-06):
out. \(\mathrm{A}=20[\%](\hat{=} 4 \mathrm{~mA})\) out. \(\mathrm{E}=100[\%](\hat{}(20 \mathrm{~mA}) \quad\) dis. \(\mathrm{A}=4,0 \quad\) dis. \(\mathrm{E}=20,0\)
Display \(4,0 \xlongequal{\wedge} 4,0 \mathrm{~mA}\) at output
Display 20,0 \(\xlongequal[=]{20,0} \mathrm{~mA}\) at output, adjustable in 0,1 steps
out. \(\mathrm{A}=0[\%](\hat{=} 0 \mathrm{~mA}) \quad\) out. \(\mathrm{E}=50[\%](\hat{=} 10 \mathrm{~mA}) \quad\) dis. \(\mathrm{A}=-10,00 \quad\) dis. \(\mathrm{E}=60,00\)
Display \(-10,00 \xlongequal{\wedge} 0,00 \mathrm{~mA}\) at output
Display \(60,00 \xlongequal{\wedge} 10,00 \mathrm{~mA}\) at output, adjustable in 0,01 steps
\[
\text { Factory setting: } \quad 0,1 \% \text { step size; } 0,0 \ldots 100,0 \% \text { Display } \xlongequal[=]{ } 4,0 \ldots 20,0 \mathrm{~mA} \text { at output }
\]

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(\quad 10 \ldots . .55^{\circ} \mathrm{C}\)
Isolating voltage:

4 kV eff. 1 sec . Auxiliary power
(only SE 30.24 GW ):
500 V eff. 1 sec. Input/ Output

\section*{Auxiliary power:}
\begin{tabular}{ll} 
Wide range: & \(24 \ldots .250 \mathrm{~V} \mathrm{DC}\) \\
& \(90 \ldots .253 \mathrm{~V} \mathrm{AC}\) \\
& \(<3 \mathrm{~W}\) \\
Influence of aux. power: & \(<0,1 \%\)
\end{tabular}

\section*{Characteristics of transmission:}
\begin{tabular}{|c|c|}
\hline Transmission error: & <0,1 \% \\
\hline Temperature error: & < \(100 \mathrm{ppm} / \mathrm{K}\) \\
\hline Load influence I: & \begin{tabular}{l}
\[
<50 \mathrm{ppm}
\] \\
of final value
\end{tabular} \\
\hline Load influence U: & \[
\begin{aligned}
& <0,1 \% \\
& \text { at } 1 \mathrm{k} \Omega \text { Load }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Ordering information:}

Accessories: USB2/ USB-Simulator with KALIB-Software

\section*{Directive:}

EMC Directive: 2014/30/EU*
Low Voltage Directive: 2014/35/EU
*minimum deviations possible during
HF-radiation influence.

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 40 housing IP 20 clamps
Mounting rail fixed according to
EN \(50022-35 \times 7,5 \mathrm{~mm}\)
Width: \(\quad 22,5 \mathrm{~mm}\)
Weight: \(\quad 116 \mathrm{~g}\)
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval:
Connection: pluggable screw clamps \(0,2 \ldots 2,5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a
distance of approx. 5 mm to each other.

Type: SE 30.00 GW
wide range contact-IN
SE 30.24 GW wide range 24V-IN
\begin{tabular}{|c|c|c|c|c|c|}
\hline Title & Specification & \begin{tabular}{l}
PC- \\
Inter- \\
face
\end{tabular} & Available designs & Auxiliary power & Page \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
ANALOG CALCULATOR \\
addition, subtraction, linearization, multiplying, min - and maximum selector, calculator of the square root
\end{tabular}} \\
\hline AS 3.00 SDC & 3 inputs \(\pm 20 \mathrm{~mA}, 1\) output I or U, addition, subtraction, linearization, parameterizable & X & G 6,2 & 20...30 V DC & 06-01 \\
\hline AS 3.00 MW & 3 inputs \(\pm 20 \mathrm{~mA}, 1\) output I or U, addition, subtraction, linearization, parameterizable & X & G 12,5 & 24... 250 V DC, \(90 . . .253 \mathrm{~V} \mathrm{AC}\) & 06-03 \\
\hline AS 3.10 SDC & 3 inputs \(\pm 10 \mathrm{~V}\), 1 output I or U, addition, subtraction, linearization, parameterizable & X & G 6,2 & 20...30 V DC & 06-05 \\
\hline AS 3.10 MW & 3 inputs \(\pm 10 \mathrm{~V}\), 1 output I or U , addition, subtraction, linearization, parameterizable & X & G 12,5 & 24... 250 V DC, \(90 . . .253 \mathrm{~V} \mathrm{AC}\) & 06-07 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{ANALOG MEMORY} \\
\hline AWS 1.00 SDC & \begin{tabular}{l}
parameterizable analog memory, \\
input \(\pm 20 \mathrm{~mA}\) \\
output 0 ... 20 mA or \(0 . . .10 \mathrm{~V}\), \\
contact for memorize, parameterizable
\end{tabular} & x & G 6,2 & 20... 30 V DC & 06-09 \\
\hline AWS 1.00 MW & \begin{tabular}{l}
parameterizable analog memory, \\
input \(\pm 20 \mathrm{~mA}\) \\
output 0 ... 20 mA or \(0 . . .10 \mathrm{~V}\), \\
contact for memorize, parameterizable
\end{tabular} & X & G 12,5 & 24... 250 V DC, \(90 . . .253 \mathrm{~V} \mathrm{AC}\) & 06-11 \\
\hline AWS 1.10 SDC & \begin{tabular}{l}
parameterizable analog memory, \\
input \(\pm 10 \mathrm{~V}\) \\
output 0 ... 20 mA or \(0 . . .10 \mathrm{~V}\), \\
contact for memorize, parameterizable
\end{tabular} & x & G 6,2 & 20... 30 V DC & 06-13 \\
\hline
\end{tabular}

\footnotetext{
* Designs: \(\quad G=\) housing,
\(\mathrm{T}=\) housing for door installation,
\(E=\) eurocard
}

Year
Warranty

\section*{FEATURES}
- Calculating functions:

\section*{\(\oplus \underbrace{\bullet} \odot\)}
- Minimum-/ Maximum selector
- Linearization
- Freely configurable:

3 inputs \(\pm 20 \mathrm{~mA}\)
1 output 0 (4)... \(20 \mathrm{~mA} / 0(2) . . .10 \mathrm{~V}\)
■ Parameterization without auxiliary power via PC-interface

■ Galvanic 3-way isolation of \(2,5 \mathrm{kV}\)
Low internal consumption

\section*{FUNCTION}

The Analog Calculator is used for calculations such as addition, subtraction and linearization of analog values which as a result have an analog signal in kind of a current or a voltage. Due to its customized setting of all individual input signals, the mode of calculation and the output signal the device has a large range of application. It is equipped with bipolar current inputs as well as a current and voltage output.


The AS 3.00 SDC is being parameterized by the USB2 adapter in connection with KALIB-Software. The basic calculation units can be selected directly, linearizations are produced by a table of values and a polynomial calculation with optimization. Actual measured values of input and output can also be visualized.



\footnotetext{
Schuhmann GmbH \& Co. KG Römerstraße 2 D-74363 Güglingen
Tel. +4971355056
Fax + 4971355355
www.schuhmann-messtechnik.de
}

\section*{Input:}
\begin{tabular}{|c|c|}
\hline I: DC current (bipolar): connection: & \(-20 . . .0 . . .+20 \mathrm{~mA}\); input resistance approx. \(10 \Omega\) \(E 1=\) terminal \(8-, 7+; E 2=\) terminal \(8-, 6+; E 3=\) terminal \(8-, 5+\) \\
\hline \multirow[t]{6}{*}{Adjustable per input:} & range start, range end: \(-20,5 \ldots \ldots \ldots+20,5 \mathrm{~mA}\) \\
\hline & Cut-Off-Min: on falling below this value is set as input \\
\hline & Cut-Off-Max: on exceeding this value is set as input \\
\hline & error limit Min: on falling below a defined fixed value is set as output error limit Max: on exceeding a defined fixed value is set as output \\
\hline & evaluation of input between -100\%.... \(0 \% . . .+100 \%\) \\
\hline & (with -100\%...0\% \(\Rightarrow\) calculated inversion of input) \\
\hline \multirow[t]{6}{*}{Basic calculating:} & output \(=\mathrm{E} 1+\mathrm{E} 2+\mathrm{E} 3\) \\
\hline & output \(=\mathrm{E} 1 \times \mathrm{E} 2\) \\
\hline & output \(=\) E1 / E2 \\
\hline & output \(=\) Min/ Max (E1, E2, E3) \(\quad\) (minimum-/ maximum selector) \\
\hline & output \(=(\mathrm{E} 1+\mathrm{E} 2) / \mathrm{E} 3\) \\
\hline & output \(=(\mathrm{E} 1+\mathrm{E} 2) \times \mathrm{E} 3\) \\
\hline \multirow[t]{3}{*}{Functions:} & output \(=\mathrm{f}(\mathrm{E} 1, \mathrm{E} 2, \mathrm{E} 3)\) \\
\hline & User-defined functions possible based on pairs of variates (linearization). \\
\hline & Other calculation functions on request. \\
\hline
\end{tabular}

\section*{Output:}
\begin{tabular}{lll}
\hline I: Ioad-independent DC current: & \begin{tabular}{l}
\(0(4) \ldots 20 \mathrm{~mA}\) \\
connection:
\end{tabular} & permissible load max. \(580 \Omega\) \\
\hline U: Ioad-independent DC voltage: & \(0(2) \ldots 10 \mathrm{~V}\) \\
\begin{tabular}{l} 
connection:
\end{tabular} & terminal \(3-, 4+\) & permissible load \(\geq 1 \mathrm{k} \Omega\) \\
\hline
\end{tabular}

The minimum/ maximum limits for current and voltage output are freely selectable and adjustable in clear text. On exceeding or falling below the limits at the output, the specified limit is set at the output (only within the error limits at the input).

\section*{Adjustment:}

Measuring ranges and parameterization are adjustable in parameter data by KALIB-Software. You need a PC and the interface adapter USB2 with KALIB-Software.

\section*{Display:}
\begin{tabular}{lll}
\hline LED status: & \begin{tabular}{l} 
green, active \\
green, flashing
\end{tabular} & \begin{tabular}{l} 
input signals are in standard range, device ready for use \\
input out of predetermined limits or \\
exceeding of measuring range
\end{tabular}
\end{tabular}

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(\quad 0 . . .55^{\circ} \mathrm{C}\)
Isolation voltage:
\[
\begin{aligned}
& \text { 2,5 kV eff. } 1 \mathrm{sec} \text {. input-output } \\
& \text { 2,5 kV eff. } 1 \mathrm{sec} \text {. auxiliary voltage }
\end{aligned}
\]

\section*{Auxiliary power:}

24 V D:
Influence of
auxiliary power:
< 0,1 \%
Characteristics of transmission:
Resolution:
Linearity error:
Temperature error:
Load influence I:
Load influence U:
Setting time:
\(<0,12 \%\)
15 bit
< 0,1 \%
< 100 ppm/ K
< 50 ppm
of final value
\(<0,2 \%\) at \(1 \mathrm{k} \Omega\) load
\(<500 \mathrm{msec}\).

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & 2014/30/EU* \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during
HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to
EN \(50022-35 \times 6,2 \mathrm{~mm}\)
6,2 mm
52 g
Polyamide PA
Vo (UL 94)
CE
screw clamps
\(0,14 \ldots 2,5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a distance \(>1 \mathrm{~mm}\) to each other. Please check parameter before initial operation!

\section*{Ordering information:}
\begin{tabular}{ll} 
Type: & AS 3.00 SDC \(24 V D C\) \\
Accessories: & USB2/ USB-Simulator with \\
& KALIB-Software, manual
\end{tabular}

\section*{FEATURES}
- Calculating functions:

\section*{}
- Minimum-/ Maximum selector
- Linearization

■ Freely configurable:
3 inputs \(\pm 20 \mathrm{~mA}\)
1 output 0(4)... \(20 \mathrm{~mA} / 0(2) . . .10 \mathrm{~V}\)
■ Parameterization without auxiliary power via PC-interface
- Wide range auxiliary power 24... 250 V DC/ 90... 253 V AC

■ Galvanic 3-way isolation of \(2,5 \mathrm{kV}\)

\section*{FUNCTION}

The Analog Calculator is used for calculations such as addition, subtraction and linearization of analog values which as a result have an analog signal in kind of a current or a voltage. Due to its customized setting of all individual input signals, the mode of calculation and the output signal the device has a large range of application. It is equipped with bipolar current inputs as well as a current and voltage output.


The AS 3.00 MW is being parameterized by the USB2 adapter in connection with KALIB-Software. The basic calculation units can be selected directly, linearizations are produced by a table of values and a polynomial calculation with optimization. Actual measured values of input and output can also be visualized.


\section*{AS 3.00 MW}

Connection diagram:


Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

\section*{Input:}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{I: DC current (bipolar): connection: Adjustable per input:} & \(-20 \ldots 0 . .+20 \mathrm{~mA}\); input resistance approx. \(10 \Omega\) \\
\hline & \(\mathrm{E} 1=\) terminal \(8-, 7+; \mathrm{E} 2=\) terminal \(8-, 6+; \mathrm{E} 3=\) terminal \(8-, 5+\) range start, range end: \(-20,5 \ldots 0 \ldots+20,5 \mathrm{~mA}\) \\
\hline & Cut-Off-Min: on falling below this value is set as input \\
\hline & Cut-Off-Max: on exceeding this value is set as input \\
\hline & error limit Min: on falling below a defined fixed value is set as output \\
\hline & error limit Max: on exceeding a defined fixed value is set as output \\
\hline & evaluation of input between \(-100 \% \ldots . .0 \% \ldots+100 \%\) \\
\hline & (with -100\%... \(0 \% \Rightarrow\) calculated inversion of input) \\
\hline \multirow[t]{6}{*}{Basic calculating:} & output \(=\mathrm{E} 1+\mathrm{E} 2+\mathrm{E} 3\) \\
\hline & output \(=\mathrm{E} 1 \times \mathrm{E} 2\) \\
\hline & output \(=\) E1 / E2 \\
\hline & output \(=\) Min/ Max (E1, E2, E3) (minimum-/ maximum selector) \\
\hline & output \(=(E 1+E 2) / E 3\) \\
\hline & output \(=(\mathrm{E} 1+\mathrm{E} 2) \times \mathrm{E} 3\) \\
\hline \multirow[t]{3}{*}{Functions:} & output \(=\mathrm{f}(\mathrm{E} 1, \mathrm{E} 2, \mathrm{E} 3)\) \\
\hline & User-defined functions possible based on pairs of variates (linearization). \\
\hline & Other calculation functions on request. \\
\hline
\end{tabular}

\section*{Output:}
\begin{tabular}{lll}
\hline I: Ioad-independent DC current: & \begin{tabular}{l}
\(0(4) \ldots 20 \mathrm{~mA}\) \\
conmection:
\end{tabular} & permissible load max. \(580 \Omega\) \\
\hline U: Ioad-independent DC voltage: & \(0(2) \ldots 10 \mathrm{~V}\) \\
\begin{tabular}{l} 
connection:
\end{tabular} & terminal \(3-, 4+\) & permissible load \(\geq 1 \mathrm{k} \Omega\) \\
\hline
\end{tabular}

The minimum/ maximum limits for current and voltage output are freely selectable and adjustable in clear text. On exceeding or falling below the limits at the output, the specified limit is set at the output (only within the error limits at the input).

\section*{Adjustment:}

Measuring ranges and parameterization are adjustable in parameter data by KALIB-Software. You need a PC and the interface adapter USB2 with KALIB-Software.

Display:
\begin{tabular}{lll} 
LED status: & \begin{tabular}{l} 
green, active \\
green, flashing
\end{tabular} & \begin{tabular}{l} 
input signals are in standard range, device ready for use \\
input out of predetermined limits or \\
exceeding of measuring range
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Environmental conditions:} & \multicolumn{2}{|l|}{Directive:} \\
\hline \multirow[t]{2}{*}{Storage temperature: Operating temperature: Isolation voltage:} & \(-40 . .+70^{\circ} \mathrm{C}\) & EMC Directive: & 2014/30/EU* \\
\hline & 0... \(55^{\circ} \mathrm{C}\) & Low Voltage Directive: & 2014/35/EU \\
\hline \multicolumn{2}{|l|}{2,5 kV eff. 1 sec. input-output} & \multicolumn{2}{|l|}{HF-radiation influence} \\
\hline \multicolumn{2}{|l|}{\(2,5 \mathrm{kV}\) eff. 1 sec. auxiliary voltage} & \multicolumn{2}{|l|}{Mounting details:} \\
\hline \multicolumn{2}{|l|}{Auxiliary power:} & \multicolumn{2}{|l|}{Housing for top hat rail} \\
\hline \multirow[t]{3}{*}{Wide range:} & 24... 250 V DC & \multirow[t]{2}{*}{Type of protection:} & IP 40 housing \\
\hline & \(90 . .253 \mathrm{~V}\) AC & & IP 20 clamps \\
\hline & \(<3 \mathrm{~W}\) & \multicolumn{2}{|l|}{Mounting rail fixed according to} \\
\hline \multicolumn{2}{|l|}{Influence of} & EN 50 & \(2-35 \times 6,2 \mathrm{~mm}\) \\
\hline auxiliary power: & <0,1\% & Width: & \(12,5 \mathrm{~mm}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Characteristics of transmission:}} & Weight: & 108 g \\
\hline & & \multirow[t]{2}{*}{Material:
Flammability class:} & Polyamide PA \\
\hline Transmission error: & <0,12\% & & Vo (UL 94) \\
\hline Resolution: & 15 bit & Flammability class: & CE \\
\hline Linearity error: & < 0,1\% & Connection: & plugg. screw clamps \\
\hline Temperature error: Load influence : & < \(100 \mathrm{ppm} / \mathrm{K}\) & \multicolumn{2}{|l|}{\(0,14 \ldots 2,5 \mathrm{~mm}^{2}\)} \\
\hline \multirow[b]{3}{*}{Load influence U: Setting time:} & \[
\begin{aligned}
& <50 \mathrm{ppm} \\
& \text { of final value }
\end{aligned}
\] & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{For safety reasons we recommend to mount the housing for top hat rail with a distance \(>1 \mathrm{~mm}\) to each other. Please check parameter before initial operation!}} \\
\hline & \(<0,2 \%\) at \(1 \mathrm{k} \Omega\) load & & \\
\hline & \(<500 \mathrm{msec}\). & & \\
\hline \multirow[t]{2}{*}{Ordering informatio} & & \multirow[t]{2}{*}{\begin{tabular}{l}
Type: \\
Accessories:
\end{tabular}} & MW wide range \\
\hline & & & SB-Simulator with Software, manual \\
\hline
\end{tabular}

\section*{FEATURES}
- Calculating functions:

\section*{\(\pm-x \div\)}
- Minimum-/ Maximum selector
- Linearization
- Freely configurable:

3 inputs \(\pm 10 \mathrm{~V}\)
1 output 0(4)... \(20 \mathrm{~mA} / 0(2) . . .10 \mathrm{~V}\)
- Parameterization without auxiliary power via PC-interface

■ Galvanic 3-way isolation of \(2,5 \mathrm{kV}\)
Low internal consumption

\section*{FUNCTION}

The Analog Calculator is used for calculations such as addition, subtraction and linearization of analog values which as a result have an analog signal in kind of a current or a voltage. Due to its customized setting of all individual input signals, the mode of calculation and the output signal the device has a large range of application. It is equipped with bipolar voltage inputs as well as a current and voltage output.


The AS 3.10 SDC is being parameterized by the USB2 adapter in connection with KALIB-Software. The basic calculation units can be selected directly, linearizations are produced by a table of values and a polynomial calculation with optimization. Actual measured values of input and output can also be visualized.


Connection diagram:


\footnotetext{
Schuhmann GmbH \& Co. KG Römerstraße 2 D-74363 Güglingen
Tel. +4971355056
Fax + 4971355355
www.schuhmann-messtechnik.de
}

\section*{Input:}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
I: DC voltage (bipolar): connection: \\
Adjustable per input:
\end{tabular}} & \(-10 \ldots 0 . . .+10 \mathrm{~V}\); input resistance approx. \(100 \mathrm{k} \Omega\)
\[
\mathrm{E} 1=\text { terminal } 8-, 7+; \mathrm{E} 2=\text { terminal } 8-, 6+; \mathrm{E} 3=\text { terminal } 8-, 5+
\] \\
\hline & range start, range end: \(-10,25 \ldots . . . . .+10,25 \mathrm{~V}\) \\
\hline & Cut-Off-Min: on falling below this value is set as input \\
\hline & Cut-Off-Max: on exceeding this value is set as input \\
\hline & error limit Min: on falling below a defined fixed value is set as output \\
\hline & error limit Max: on exceeding a defined fixed value is set as output \\
\hline & evaluation of input between -100\%...0\%...+100\% \\
\hline & (with -100\%...0\% \(\Rightarrow\) calculated inversion of input) \\
\hline \multirow[t]{6}{*}{Basic calculating:} & output \(=\mathrm{E} 1+\mathrm{E} 2+\mathrm{E} 3\) \\
\hline & output \(=\mathrm{E} 1 \times \mathrm{E} 2\) \\
\hline & output \(=\) E1 / E2 \\
\hline & output \(=\) Min/ Max (E1, E2, E3) (minimum-/ maximum selector) \\
\hline & output \(=(\mathrm{E} 1+\mathrm{E} 2) / \mathrm{E} 3\) \\
\hline & output \(=(\mathrm{E} 1+\mathrm{E} 2) \times \mathrm{E} 3\) \\
\hline \multirow[t]{3}{*}{Functions:} & output \(=\mathrm{f}(\mathrm{E} 1, \mathrm{E} 2, \mathrm{E} 3)\) \\
\hline & User-defined functions possible based on pairs of variates (linearization). \\
\hline & Other calculation functions on request. \\
\hline
\end{tabular}

\section*{Output:}
\begin{tabular}{lll}
\hline I: Ioad-independent DC current: & \begin{tabular}{l}
\(0(4) \ldots 20 \mathrm{~mA}\) \\
terminal \(3-, 4+\)
\end{tabular} & permissible load max. \(580 \Omega\) \\
\hline U: load-independent DC voltage: & \(0(2) \ldots 10 \mathrm{~V}\) & permissible load \(\geq 1 \mathrm{k} \Omega\) \\
\begin{tabular}{l} 
connection:
\end{tabular} & terminal \(3-, 4+\) & \\
\hline
\end{tabular}

The minimum/ maximum limits for current and voltage output are freely selectable and adjustable in clear text. On exceeding or falling below the limits at the output, the specified limit is set at the output (only within the error limits at the input).

\section*{Adjustment:}

Measuring ranges and parameterization are adjustable in parameter data by KALIB-Software. You need a PC and the interface adapter USB2 with KALIB-Software.

\section*{Display:}
\begin{tabular}{lll}
\hline LED status: & \begin{tabular}{l} 
green, active \\
green, flashing
\end{tabular} & \begin{tabular}{l} 
input signals are in standard range, device ready for use \\
input out of predetermined limits or \\
exceeding of measuring range
\end{tabular}
\end{tabular}

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(\quad 0 . . .55^{\circ} \mathrm{C}\)
Isolation voltage:
\[
\begin{aligned}
& \text { 2,5 kV eff. } 1 \mathrm{sec} \text {. input-output } \\
& \text { 2,5 kV eff. } 1 \mathrm{sec} \text {. auxiliary voltage }
\end{aligned}
\]

\section*{Auxiliary power:}

24 V D:
Influence of
auxiliary power:
\(<0,1 \%\)
Characteristics of transmission:
Resolution:
Linearity error:
Temperature error:
Load influence I:
Load influence U:
Setting time:
\(<0,12 \%\)
15 bit
<0,1\%
< 100 ppm/ K
< 50 ppm
of final value
\(<0,2 \%\) at \(1 \mathrm{k} \Omega\) load
\(<500\) msec.

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & 2014/30/EU* \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during
HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to
EN 50022-35 x 6,2 mm
6,2 mm
52 g
Polyamide PA
Vo (UL 94)
CE
screw clamps
\(0,14 \ldots 2,5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a distance > 1 mm to each other. Please check parameter before initial operation!
\begin{tabular}{lll|}
\hline Ordering information: & \begin{tabular}{l} 
Type: \\
Accessories:
\end{tabular} & \begin{tabular}{l} 
AS 3.10 SDC \(\quad 24 \mathrm{VDC}\) \\
USB2/ USB-Simulator with \\
KALIB-Software, manual
\end{tabular} \\
& &
\end{tabular}

\section*{FEATURES}
- Calculating functions:

\section*{}
- Minimum-/ Maximum selector
- Linearization

■ Freely configurable:
3 inputs \(\pm 10 \mathrm{~V}\)
1 output 0(4)... \(20 \mathrm{~mA} / 0(2) . . .10 \mathrm{~V}\)
- Parameterization without auxiliary power via PC-interface
- Wide range auxiliary power 24... 250 V DC/ 90... 253 V AC

■ Galvanic 3-way isolation of \(2,5 \mathrm{kV}\)

\section*{FUNCTION}

The Analog Calculator is used for calculations such as addition, subtraction and linearization of analog values which as a result have an analog signal in kind of a current or a voltage. Due to its customized setting of all individual input signals, the mode of calculation and the output signal the device has a large range of application. It is equipped with bipolar voltage inputs as well as a current and voltage output.


The AS 3.10 MW is being parameterized by the USB2 adapter in connection with KALIB-Software. The basic calculation units can be selected directly, linearizations are produced by a table of values and a polynomial calculation with optimization. Actual measured values of input and output can also be visualized.


Connection diagram:


Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

Input:
I: \(\quad\) C voltage (bipolar): \(\quad-10 \ldots 0 . . .+10 \mathrm{~V}\); input resistance approx. \(100 \mathrm{k} \Omega\)
connection:
Adjustable per input:

Basic calculating:

Functions:
\(\mathrm{E} 1=\) terminal \(8-, 7+; \mathrm{E} 2=\) terminal \(8-, 6+; \mathrm{E} 3=\) terminal \(8-, 5+\) range start, range end: \(-10,25 \ldots 0 \ldots+10,25 \mathrm{~V}\)
Cut-Off-Min: on falling below this value is set as input
Cut-Off-Max: on exceeding this value is set as input
error limit Min: on falling below a defined fixed value is set as output error limit Max: on exceeding a defined fixed value is set as output evaluation of input between \(-100 \% \ldots . .0 \% \ldots+100 \%\)
(with \(-100 \% \ldots \% \Rightarrow\) calculated inversion of input)
output \(=\mathrm{E} 1+\mathrm{E} 2+\mathrm{E} 3\)
output \(=\mathrm{E} 1 \times \mathrm{E} 2\)
output \(=\) E1 \(/\) E2
output \(=\) Min/ Max (E1, E2, E3) (minimum-/ maximum selector)
output \(=(\mathrm{E} 1+\mathrm{E} 2) / \mathrm{E} 3\)
output \(=(E 1+E 2) \times E 3\)
output \(=f(E 1, E 2, E 3)\)
User-defined functions possible based on pairs of variates (linearization).
Other calculation functions on request.
Output:
\begin{tabular}{lll}
\hline I: Ioad-independent DC current: & \begin{tabular}{l}
\(0(4) \ldots . .20 \mathrm{~mA}\) \\
connection:
\end{tabular} & permissible load max. \(580 \Omega\) \\
\hline \begin{tabular}{l} 
U: Ioad-independent \(D C\) voltage: \\
connection:
\end{tabular} & \begin{tabular}{l}
\(0(2) \ldots 10 \mathrm{~V}\) \\
terminal \(3-, 4+\)
\end{tabular} & permissible load \(\geq 1 \mathrm{k} \Omega\) \\
\hline
\end{tabular}

The minimum/ maximum limits for current and voltage output are freely selectable and adjustable in clear text. On exceeding or falling below the limits at the output, the specified limit is set at the output (only within the error limits at the input).

\section*{Adjustment:}

Measuring ranges and parameterization are adjustable in parameter data by KALIB-Software. You need a PC and the interface adapter USB2 with KALIB-Software.
Display:
ED

LED
\begin{tabular}{ll} 
green, active & \begin{tabular}{l} 
input signals are in standard range, device ready for use \\
input out of predetermined limits or
\end{tabular} \\
exceeding of measuring range
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Environmental conditions:} & \multicolumn{2}{|l|}{Directive:} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Storage temperature: \\
Operating temperature
\end{tabular}} & \(-40 \ldots+70^{\circ} \mathrm{C}\) & \multirow[t]{2}{*}{EMC Directive: Low Voltage Directive:} & 2014/30/EU* \\
\hline & 0... \(55^{\circ} \mathrm{C}\) & & 2014/35/EU \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Isolation voltage:}} & \multicolumn{2}{|l|}{*minimum deviations possible during} \\
\hline & 2,5 kV eff. 1 sec. input-output & \multicolumn{2}{|l|}{HF-radiation influence} \\
\hline 2,5 kV eff. 1 sec & auxiliary voltage & \multicolumn{2}{|l|}{Mounting details:} \\
\hline \multicolumn{2}{|l|}{Auxiliary power:} & Housing for top hat rail & \\
\hline \multirow[t]{3}{*}{Wide range:} & 24... 250 V DC & \multirow[t]{2}{*}{Type of protection:} & IP 40 housing \\
\hline & \(90 . .253 \mathrm{VAC}\) & & IP 20 clamps \\
\hline & \(<3 \mathrm{~W}\) & \multicolumn{2}{|l|}{Mounting rail fixed according to} \\
\hline \multirow[t]{2}{*}{Influence of auxiliary power:} & & EN 5002 & \[
22-35 \times 6,2 \mathrm{~mm}
\] \\
\hline & < 0,1\% & Width: & \(12,5 \mathrm{~mm}\) \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Characteristics of transmission:}} & Weight: & 108 g \\
\hline & & Material: & Polyamide PA \\
\hline \multirow[t]{2}{*}{Transmission error: Resolution:} & <0,12\% & Flammability class: & Vo (UL 94) \\
\hline & 15 bit & Approval: & CE \\
\hline \multirow[t]{2}{*}{Linearity error: Temperature error:} & < 0,1\% & Connection: & plugg. screw clamps \\
\hline & < \(100 \mathrm{ppm} / \mathrm{K}\) & & 0,14 ... \(2,5 \mathrm{~mm}^{2}\) \\
\hline Load influence I: & \[
\begin{aligned}
& <50 \mathrm{ppm} \\
& \text { of final value }
\end{aligned}
\] & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{For safety reasons we recommend to mount the housing for top hat rail with a distance \(>1 \mathrm{~mm}\) to each other. Please check parameter before initial operation!}} \\
\hline Load influence \(U\) : Setting time: & \begin{tabular}{l}
\(<0,2 \%\) at \(1 \mathrm{k} \Omega\) load \\
\(<500 \mathrm{msec}\).
\end{tabular} & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Ordering information:}} & Type: AS 3.10 & MW wide range \\
\hline & & Accessories: USB2/ & SB-Simulator with oftware, manual \\
\hline
\end{tabular}

\author{
FEATURES \\ - Bipolar input: Current \(\pm 20\) mA \\ ■ Output: \\ Current 0(4)... 20 mA or \\ Voltage 0(2)... 10 V \\ - Storage of input signal via contact input \\ - Parameterization without auxiliary power via PC-interface \\ ■ Galvanic 3-way isolation of \(2,5 \mathrm{kV}\) \\ Low internal consumption
}

\section*{FUNCTION}

Amplifiers are used for the galvanic isolation or conversion of analog signals. This guarantees a safe decoupling between sensor and evaluation circuit and any influence of other sensor circuits among each other is absolutely impossible. Due to its individual setting of input and output signals the device has a large range of application. It is equipped with one bipolar current input as well as a current or voltage output. It is being parameterized by the USB2 Interface in connection with KALIB-Software.


The AWS 1.00 SDC memorizes direct current signals which are available for a short time only. The external activation to memorize a defined time value can be carried out by a contact or a potential free transistor output. Typical applications are amongst other things e.g. memorizing of desired value in discontinuous processes, storage of signals in case of disturbances of previous instruments, by cyclic requests of inputs via multiplexer or to hold a transmitter signal for the purpose of repairing the readings recorder.
\(\square\)



\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
Fax + 4971355355
www.schuhmann-messtechnik.de
}
\begin{tabular}{ll} 
Input: & \\
\hline : DC current (bipolar): & \(-20 \ldots . . \ldots+20 \mathrm{~mA} \quad\) input resistance approx. \(10 \Omega\) \\
& \(-10 . .0 . \ldots+10 \mathrm{~mA}\) \\
connection: & terminal \(8-, 7+\)
\end{tabular}

Memory contact:
connection:
output \(=\) stored value when contact is active output \(=\) input when contact is inactive terminal 5 -, \(6+\)

Within the described measuring ranges the beginning respectively the end can be freely selected.
The functioning of storage is adjustable (active at closed or open contact).

\section*{Output:}
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
I: Ioad-independent DC current: \\
connection:
\end{tabular} & \begin{tabular}{l}
\(0(4) \ldots 20 \mathrm{~mA}\) \\
terminal \(3-, 4+\)
\end{tabular} & permissible load max. \(580 \Omega\) \\
\hline \begin{tabular}{l} 
U: load-independent DC voltage: \\
\\
connection:
\end{tabular} & \begin{tabular}{l}
\(0(2) \ldots 10 \mathrm{~V}\) \\
terminal \(3-, 4+\)
\end{tabular} & permissible load \(\geq 1 \mathrm{k} \Omega\)
\end{tabular}

The minimum/ maximum limits for current and voltage output are freely selectable and adjustable in clear text. On exceeding or falling below the error limits at the input, for the output a defined fixed value can be predetermined in case of error.

\section*{Adjustment:}

Measuring ranges and parameterization are adjustable by KALIB-Software. For this you need a PC as well as the interface adapter USB2/ USB-Simulator with KALIB-Software.

\section*{Display:}
\begin{tabular}{lll}
\hline LED status: & green, active & \begin{tabular}{l} 
input signals are in standard range, device ready for use, \\
storage inactive
\end{tabular} \\
\begin{tabular}{ll} 
green, active/ \\
3 impulses \\
green, flashing
\end{tabular} & \begin{tabular}{l} 
storage active \\
input out of predetermined limits or \\
exceeding of measuring range
\end{tabular}
\end{tabular}

\section*{Environmental conditions:}
\begin{tabular}{ll} 
Storage temperature: & \(-40 \ldots+70^{\circ} \mathrm{C}\) \\
Operating temperature: & \(0 \ldots 55^{\circ} \mathrm{C}\)
\end{tabular}

Isolation voltage:
\[
\text { 2,5 kV eff. } 1 \text { sec. input-output }
\] 2,5 kV eff. 1 sec . auxiliary voltage

\section*{Auxiliary power:}
\begin{tabular}{ll}
24 V DC: & \begin{tabular}{l}
\(20 \ldots 30 \mathrm{~V} \mathrm{DC}\) \\
\\
\begin{tabular}{l} 
Influence of \\
auxiliary power:
\end{tabular}
\end{tabular}\(\quad<1,5 \mathrm{~W}\)
\end{tabular}

\section*{Characteristics of transmission:}
\begin{tabular}{ll} 
Transmission error: & \(<0,12 \%\) \\
Resolution: & 15 bit \\
Linearity error: & \(<0,1 \%\) \\
Temperature error: & \(<100 \mathrm{ppm} / \mathrm{K}\) \\
Load influence I: & \(<50 \mathrm{ppm}\) \\
Load influence U: & \begin{tabular}{l} 
of final value \\
\\
Lo \\
Setting time:
\end{tabular} \\
& \(<500\) at \(1 \mathrm{ks} \Omega\) load \\
&
\end{tabular}

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & \(2014 / 30 / E U^{*}\) \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to
\begin{tabular}{ll} 
EN \(50022-35 \times 6,2 \mathrm{~mm}\) \\
& \(6,2 \mathrm{~mm}\) \\
& 52 g \\
& Polyamide PA \\
& Vo (UL 94) \\
& CE \\
& screw clamps \\
& \(0,14 \ldots 2,5 \mathrm{~mm}^{2}\)
\end{tabular}

For safety reasons we recommend to mount the housing for top hat rail with a distance \(>1 \mathrm{~mm}\) to each other. Please check parameterization before initial operation!

\section*{Ordering information:}
\begin{tabular}{ll} 
Type: & AWS 1.00 SDC \(\quad 24 \mathrm{VDC}\) \\
Accessories: & USB2/ USB-Simulator with \\
& KALIB-Software
\end{tabular}

\section*{FEATURES}

■ Bipolar input: Current \(\pm 20 \mathrm{~mA}\)

■ Output:
Current 0(4)... 20 mA or
Voltage 0(2)... 10 V
- Storage of input signal via contact input

■ Parameterization without auxiliary power via PC-interface
■ Galvanic 3-way isolation of \(2,5 \mathrm{kV}\)

Low internal consumption

\section*{FUNCTION}

Amplifiers are used for the galvanic isolation or conversion of analog signals. This guarantees a safe decoupling between sensor and evaluation circuit and any influence of other sensor circuits among each other is absolutely impossible. Due to its individual setting of input and output signals the device has a large range of application. It is equipped with one bipolar current input as well as a current or voltage output. It is being parameterized by the USB2 Interface in connection with KALIB-Software.


The AWS 1.00 MW memorizes direct current signals which are available for a short time only. The external activation to memorize a defined time value can be carried out by a contact or a potential free transistor output. Typical applications are amongst other things e.g. memorizing of desired value in discontinuous processes, storage of signals in case of disturbances of previous instruments, by cyclic requests of inputs via multiplexer or to hold a transmitter signal for the purpose of repairing the readings recorder.



Connection diagram:


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

Input:
\begin{tabular}{|c|c|c|}
\hline I: DC current (bipolar): connection: & \[
\begin{aligned}
& -20 \ldots 0 \ldots+20 \mathrm{~mA} \\
& -10 \ldots 0 \ldots+10 \mathrm{~mA} \\
& \text { terminal } 8-, 7+
\end{aligned}
\] & input resistance approx. \(10 \Omega\) \\
\hline \begin{tabular}{l}
Memory contact: \\
connection:
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { output }=\text { stored value when contact is active } \\
& \text { output }=\text { input when contact is inactive } \\
& \text { terminal } 5-, 6+
\end{aligned}
\]} \\
\hline \multicolumn{3}{|l|}{Within the described measuring ranges the beginning respectively the end can be freely selected. The functioning of storage is adjustable (active at closed or open contact).} \\
\hline \multicolumn{3}{|l|}{Output:} \\
\hline I: Ioad-independent DC current: connection: & 0(4)... 20 mA terminal 3-, \(4+\) & permissible load max. \(580 \Omega\) \\
\hline U: load-independent DC voltage connection: & \[
\begin{aligned}
& 0(2) \ldots 10 \mathrm{~V} \\
& \text { terminal } 3-, 4+
\end{aligned}
\] & permissible load \(\geq 1 \mathrm{k} \Omega\) \\
\hline
\end{tabular}

The minimum/ maximum limits for current and voltage output are freely selectable and adjustable in clear text. On exceeding or falling below the error limits at the input, for the output a defined fixed value can be predetermined in case of error.

\section*{Adjustment:}

Measuring ranges and parameterization are adjustable by KALIB-Software.
For this you need a PC as well as the interface adapter USB2/ USB-Simulator with KALIB-Software.
Display:
\begin{tabular}{lll} 
LED status: \(\quad\) green, active & \begin{tabular}{l} 
input signals are in standard range, device ready for use, \\
storage inactive
\end{tabular} \\
& \begin{tabular}{l} 
green, active/ \\
3 impulses \\
green, flashing
\end{tabular} & \begin{tabular}{l} 
storage active \\
input out of predetermined limits or \\
exceeding of measuring range
\end{tabular}
\end{tabular}

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(0 \ldots 55^{\circ} \mathrm{C}\)
Isolation voltage:
\(2,5 \mathrm{kV}\) eff. 1 sec . input-output
\(2,5 \mathrm{kV}\) eff. 1 sec . auxiliary voltage

\section*{Auxiliary power:}
\begin{tabular}{ll} 
Wide range: & \begin{tabular}{l}
\(24 \ldots 250 \mathrm{~V} \mathrm{DC}\) \\
\\
\\
\\
\\
Influence of \\
\\
auxiliary power:
\end{tabular} \\
& \(<3 \mathrm{~W}\)
\end{tabular}

\section*{Characteristics of transmission:}

Transmission error: \(\quad<0,12 \%\)
Resolution: 15 bit

Linearity error: \(\quad<0,1 \%\)
Temperature error: \(<100 \mathrm{ppm} / \mathrm{K}\)
Load influence I:
< 50 ppm
of final value
Load influence U : \(\quad<0,2 \%\) at \(1 \mathrm{k} \Omega\) load
Setting time:
\(<500 \mathrm{msec}\).

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & \(2014 / 30 / E U^{*}\) \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during
HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to
\begin{tabular}{ll} 
Width: & \(6,2 \mathrm{~mm}\) \\
Weight: & 52 g \\
Material: & Polyamide PA \\
Flammability class: & VO (UL 94) \\
Approval: & CE \\
Connection: & screw clamps \\
& \(0,14 \ldots 2,5 \mathrm{~mm}^{2}\)
\end{tabular}

For safety reasons we recommend to mount the housing for top hat rail with a distance \(>1 \mathrm{~mm}\) to each other. Please check parameterization before initial operation!
\begin{tabular}{lll} 
Ordering information: & \begin{tabular}{l} 
Type: \\
Accessories:
\end{tabular} & \begin{tabular}{l} 
AWS 1.00 MW wide range \\
USB2/ USB-Simulator with \\
KALIB-Software
\end{tabular}
\end{tabular}

\author{
FEATURES \\ - Bipolar input: Voltage \(\pm 10 \mathrm{~V}\) \\ ■ Output: \\ Current 0(4)... 20 mA or \\ Voltage 0(2)... 10 V \\ - Storage of input signal via contact input \\ - Parameterization without auxiliary power via PC-interface \\ ■ Galvanic 3-way isolation of \(2,5 \mathrm{kV}\) \\ Low internal consumption
}

\section*{FUNCTION}

Amplifiers are used for the galvanic isolation or conversion of analog signals. This guarantees a safe decoupling between sensor and evaluation circuit and any influence of other sensor circuits among each other is absolutely impossible. Due to its individual setting of input and output signals the device has a large range of application. It is equipped with bipolar voltage inputs as well as a current and voltage output. It is being parameterized by the USB2 Interface in connection with KALIB-Software.


The AWS 1.10 SDC memorizes direct voltage signals which are available for a short time only. The external activation to memorize a defined time value can be carried out by a contact or a potential free transistor output. Typical applications are amongst other things e.g. memorizing of desired value in discontinuous processes, storage of signals in case of disturbances of previous instruments, by cyclic requests of inputs via multiplexer or to hold a transmitter signal for the purpose of repairing the readings recorder.

\begin{tabular}{ll}
\begin{tabular}{l} 
Input: \\
I: DC voltage (bipolar): \\
connection:
\end{tabular} & \begin{tabular}{l}
\(-10 \ldots 0 \ldots+10 \mathrm{~V} \quad\) terminal \(8-, 7+\)
\end{tabular} \\
\hline Memory contact: & \begin{tabular}{l} 
output \(=\) stored value when contact is active \\
output \(=\) input when contact is inactive \\
terminal \(5-, 6+\)
\end{tabular} \\
connection: &
\end{tabular}
Within the described measuring ranges the beginning respectively the end can be freely selected. The functioning of storage is adjustable (active at closed or open contact).

\section*{Output:}
\begin{tabular}{lll}
\hline I: Ioad-independent DC current: & \begin{tabular}{l}
\(0(4) \ldots 20 \mathrm{~mA}\) \\
conminal \(3-, 4+\)
\end{tabular} & permissible load max. \(580 \Omega\) \\
\hline \begin{tabular}{l} 
U: load-independent DC voltage: \\
connection:
\end{tabular} & \begin{tabular}{l}
\(0(2) \ldots 10 \mathrm{~V}\) \\
terminal \(3-, 4+\)
\end{tabular} & permissible load \(\geq 1 \mathrm{k} \Omega\) \\
&
\end{tabular}
The minimum/ maximum limits for current and voltage output are freely selectable and adjustable in clear text. On exceeding or falling below the error limits at the input, for the output a defined fixed value can be predetermined in case of error.

\section*{Adjustment:}
Measuring ranges and parameterization are adjustable by KALIB-Software.
For this you need a PC as well as the interface adapter USB2/ USB-Simulator with KALIB-Software
Display:
\begin{tabular}{lll} 
LED status: & green, active & \begin{tabular}{l} 
input signals are in standard range, device ready for use, \\
storage inactive
\end{tabular} \\
& \begin{tabular}{l} 
green, active/ \\
3 impulses \\
green, flashing
\end{tabular} & \begin{tabular}{l} 
storage active \\
input out of predetermined limits or \\
exceeding of measuring range
\end{tabular}
\end{tabular}

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(0 . . .55^{\circ} \mathrm{C}\)
Isolation voltage:
\[
\text { 2,5 kV eff. } 1 \text { sec. input-output }
\] 2,5 kV eff. 1 sec . auxiliary voltage

\section*{Auxiliary power:}
\begin{tabular}{ll}
\(24 \mathrm{~V} \mathrm{DC:}\) & \begin{tabular}{l}
\(20 \ldots . .30 \mathrm{~V} \mathrm{DC}\) \\
\\
\hline \(1,5 \mathrm{~W}\)
\end{tabular} \\
\begin{tabular}{l} 
Influence of \\
auxiliary power:
\end{tabular} & \(<0,1 \%\)
\end{tabular}

\section*{Characteristics of transmission:}
\begin{tabular}{ll} 
Transmission error: & \(<0,12 \%\) \\
Resolution: & 15 bit \\
Linearity error: & \(<0,1 \%\) \\
Temperature error: & \(<100 \mathrm{ppm} / \mathrm{K}\) \\
Load influence I: & \(<50 \mathrm{ppm}\) \\
& \begin{tabular}{l} 
of final value \\
Load influence U: \\
Setting time:
\end{tabular} \\
& \(<0,2 \%\) at \(1 \mathrm{k} \Omega\) load \\
& \(<500 \mathrm{msec}\).
\end{tabular}

Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
Fax + 4971355355
www.schuhmann-messtechnik.de

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & 2014/30/EU* \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 20
Mounting rail fixed according to
\begin{tabular}{cl} 
EN \(50022-35 \times 6,2 \mathrm{~mm}\) \\
& \(6,2 \mathrm{~mm}\) \\
& 52 g \\
& Polyamide PA \\
& Vo (UL 94) \\
& CE \\
& screw clamps \\
& \(0,14 \ldots 2,5 \mathrm{~mm}^{2}\)
\end{tabular}

For safety reasons we recommend to mount the housing for top hat rail with a distance \(>1 \mathrm{~mm}\) to each other. Please check parameterization before initial operation!
\begin{tabular}{ll} 
Type: & AWS 1.10 SDC 24 VDC \\
Accessories: & \begin{tabular}{l} 
USB2/ USB-Simulator with \\
KALIB-Software
\end{tabular}
\end{tabular}

\section*{AC Current Transducer, AC Voltage Transducer}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Title & Specification & PC-Interface & Available designs & Auxiliary power & Page \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
AC CURRENT TRANSDUCER \\
galvanic 3-way isolation of 4 kV , potential free changeover contact, analog output: 0 (4)... 20 mA and \(0(2) \ldots . .10 \mathrm{~V}\), calibrated signal switching, operating status display, incl. CURRENT SENSOR, parameterizable
\end{tabular}} \\
\hline UW 13.00 GW 60A & multi-range: 1A, 5A, 10A, 15A, 20A, 25A, 30A, 35A, 40A, 45A, 50A, 60A AC & X & G 22,5 & 24...250 V DC, \(90 . . .253 \mathrm{~V} \mathrm{AC}\) & 07-01 \\
\hline UW 13.00 GW 100A & \begin{tabular}{l}
multi-range: 1A, 5A, 10A, 15A, 20A, 25A, \\
\(30 \mathrm{~A}, 35 \mathrm{~A}, 40 \mathrm{~A}, 45 \mathrm{~A}, 50 \mathrm{~A}, 60 \mathrm{~A}, 70 \mathrm{~A}, 80 \mathrm{~A}, 90 \mathrm{~A}, 100 \mathrm{~A} \mathrm{AC}\)
\end{tabular} & X & G 22,5 & 24... 250 V DC, \(90 . . .253 \mathrm{~V} \mathrm{AC}\) & 07-01 \\
\hline UW 13.00 GW 200A & multi-range: 60A, 70A, 80A, 90A, 100A, 120A, 140A, 160A, 180A, 200A AC & X & G 22,5 & 24... 250 V DC, \(90 . . .253 \mathrm{~V} \mathrm{AC}\) & 07-01 \\
\hline UW 13.00 GW 400A & multi-range: 120A, 140A, 160A, 180A, 200A, 240A, 280A, 320A, 360A, 400A AC & X & G 22,5 & 24...250 V DC, 90... 253 V AC & 07-01 \\
\hline UW 13.00 GW 600A & multi-range: 180A, 210A, 240A, 270A, 300A, 360A, 420A, 480A, 540A, 600A AC & X & G 22,5 & 24... 250 V DC, \(90 . . .253 \mathrm{~V} \mathrm{AC}\) & 07-01 \\
\hline
\end{tabular}

\section*{AC CURRENT TRANSDUCER}
\begin{tabular}{|l|l|l|l|l|}
\hline TF 39.00 GW & \begin{tabular}{l} 
input: \(1 \mathrm{~A} \mathrm{AC}, 5 \mathrm{~A} \mathrm{AC}\), output: \(0(2) \ldots 10 \mathrm{~V}\), \\
0(4).\(\ldots 2 \mathrm{~mA}\) active or passive, \\
simulation mode
\end{tabular} & \(G 22,5\) & \(24 \ldots 250 \mathrm{VDC}, 90 \ldots 253 \mathrm{VAC}\) & \(07-05\) \\
\hline
\end{tabular}

\section*{AC VOLTAGE TRANSDUCER}

UW 13.01 GW
input \(\mathrm{AC}: ~ 0 \ldots \mathrm{xxx} \mathrm{V} 50 \mathrm{~Hz}\),
output: \(0 \ldots 20 \mathrm{~mA}\) or \(4 \ldots 20 \mathrm{~mA}, 2 \ldots 10 \mathrm{~V}\)

\footnotetext{
* Designs: \(\quad G=\) housing,
\(\mathrm{T}=\) housing for door installation,
\(E=\) eurocard
}

Year
Warranty

\section*{FEATURES}

■ Input, switchable:
AC current up to 600 A AC,
True RMS value recording
■ Output, simultaneous: Current 0(4)... 20 mA and
Voltage 0(2)... 10 V
1 relay as limit-switch
■ Clip-on sensor specification
60 A/ 100 A/ 200 A/ 400 A/ 600 A AC
■ Parameterization via PC-interface
■ Galvanic 3-way isolation of 4 kV

\section*{FUNCTION}

The UW 13.00 GW and the clip-on sensor included in delivery is one unit.
The recording of true RMS measuring, online actual values, operating conditions of small and large pumps, motors etc. is very simple to realise with the clip-on sensor.
The clip-on sensor is recording AC current signals in a range from 1 A up to 60 AAC and is also available for larger currents such as \(100 \mathrm{~A}, 200 \mathrm{~A}, 400 \mathrm{~A}\) and 600 A .


The measuring range can be selected by turn-switch on front side. Signal attenuation, relay switchingpoint, hysteresis, switching-delay and the output signal are adjustable by the USB2 Interface in connection with the KALIB-Software.
Relay status is being indicated by LED on front side. By new installation, modernization, retrofitting or extension of a plant the mounting of the sensor is easy due to the clip-on system of it and even possible during operation.


Connection diagram:


Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

\section*{Input:}

Only connect the included clip-on sensor at the input!
Connection: terminal 9 (k), 10 (i)
It is recommended to perform a screened signal cable between sensor and current transformer!
- AC current \(50 / 60 \mathrm{~Hz}\), up to 600 A AC (depending on clip-on sensor)
- True RMS value recording

\section*{Clip-on sensor:}
- easy mounting on wire - insulating resistance min. \(50 \mathrm{M} \Omega\)
- screwed connection - test voltage 2,2 kV eff. 1 min.
- output with excess voltage protective diode
available range:
\begin{tabular}{|c|c|c|c|c|}
\hline Sensor & Rated current & max. current & max. cable- \(\varnothing\) & Dimension \\
\hline 60 A & 60 A AC & 100 A AC & 10 mm & \(26 \times 23 \times 48 \mathrm{~mm}\) \\
100 A & 100 A AC & 200 A AC & 16 mm & \(31 \times 30 \times 54 \mathrm{~mm}\) \\
200 A & 200 A AC & 400 A AC & 24 mm & \(36 \times 45 \times 76 \mathrm{~mm}\) \\
400 A & 400 A AC & 600 A AC & 35 mm & \(60 \times 40 \times 80 \mathrm{~mm}\) \\
600 A & 600 A AC & 800 A AC & 35 mm & \(60 \times 40 \times 80 \mathrm{~mm}\) \\
\hline
\end{tabular}


\section*{Output:}
\begin{tabular}{|c|c|c|}
\hline I: load-independent AC current: connection: & \[
\begin{aligned}
& 0(4) \ldots 20 \mathrm{~mA} \\
& \text { terminal 5-, } 6+
\end{aligned}
\] & permissible load max. \(500 \Omega\) \\
\hline U: load-independent AC voltage: connection: & \[
\begin{aligned}
& 0(2) . . .10 \mathrm{~V} \\
& \text { terminal } 7-, 8+
\end{aligned}
\] & permissible load \(\geq 5 \mathrm{k} \Omega\) \\
\hline Relay output: maximum switching current: maximum switching voltage: mechanical life cycle: contact life cycle: connection: & \begin{tabular}{l}
changer \\
6 A \\
250 V AC \\
\(30 \times 10^{6}\) cycles \\
\(10^{5}\) cycles \\
terminal \(13,14,15\)
\end{tabular} & \\
\hline
\end{tabular}

\section*{Adjustment:}

Input range by turn-switch on front side:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & \[
\begin{gathered}
\hline \text { Sensor } \\
60 \mathrm{~A} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Sensor } \\
100 \mathrm{~A} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Sensor } \\
& 200 A^{*}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Sensor } \\
& 400 A^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Sensor } \\
& 600 \text { A }^{*}
\end{aligned}
\] \\
\hline 0 & 0... 1 A & 0... 1 A & - & - & - \\
\hline 1 & 0...5 A & 0...5 A & - & - & - \\
\hline 2 & 0... 10 A & 0... 10 A & - & - & - \\
\hline 3 & 0... 15 A & 0... 15 A & - & - & - \\
\hline 4 & 0... 20 A & 0... 20 A & - & - & - \\
\hline 5 & 0... 25 A & 0... 25 A & - & - & - \\
\hline 6 & 0... 30 A & 0... 30 A & 0...60 A & 0...120 A & 0...180 A \\
\hline 7 & 0... 35 A & 0... 35 A & 0...70 A & 0... 140 A & 0... 210 A \\
\hline 8 & 0... 40 A & 0... 40 A & 0...80 A & 0... 160 A & 0... 240 A \\
\hline 9 & 0... 45 A & 0... 45 A & 0...90 A & 0... 180 A & 0... 270 A \\
\hline A & 0... 50 A & 0... 50 A & 0... 100 A & 0... 200 A & 0... 300 A \\
\hline B & 0... 60 A & 0... 60 A & 0...120 A & 0... 240 A & 0... 360 A \\
\hline C & - & 0... 70 A & 0... 140 A & 0... 280 A & 0... 420 A \\
\hline D & - & 0... 80 A & 0...160 A & 0... 320 A & 0... 480 A \\
\hline E & - & 0... 90 A & 0... 180 A & 0...360 A & 0...540 A \\
\hline F & - & 0... 100 A & 0... 200 A & 0... 400 A & 0...600 A \\
\hline
\end{tabular}
* Connect terminal \(10+11\) and change over the KALIB-Software to change the clip-on sensor! (otherwise factory setting)

Adjustment of switching points and parameterization via USB2 Interface in connection with the KALIB-Software.
For this you need a PC as well as the interface adapter USB2/ USB-Simulator with

\section*{KALIB-Software.}

Parameterizable values:


Display:
LED status: green, active input signal within range, ready for operation red, active relay tightened

\section*{Environmental conditions:}
\(\begin{array}{ll}\text { Storage temperature: } & -20 \ldots+70^{\circ} \mathrm{C} \\ \text { Operating temperature: } & 0 \ldots 55^{\circ} \mathrm{C} \\ \text { Isolation voltage: } & 4 \mathrm{kV} \text { eff. } 1 \mathrm{sec} .\end{array}\)
input/ output/ auxiliary voltage

\section*{Auxiliary power:}
\begin{tabular}{ll} 
Wide range: & \(24 \ldots 250 \mathrm{~V} \mathrm{DC}\) \\
& \(90 \ldots 253 \mathrm{~V} \mathrm{AC}\) \\
& \(<3 \mathrm{~W}\) \\
Infl. of auxiliary power: & \(<0,1 \%\)
\end{tabular}

\section*{Characteristics of transmission:}

Transmission error: \(<1 \%\) of final value

Linearity error:
Resolution:
Temperature error:
Load influence I:
\[
\pm 0,1 \%
\]

10 bit
< \(100 \mathrm{ppm} / \mathrm{K}\)
\(<50 \mathrm{ppm}\)
of final value
Load influence \(U\) :
\(<0,2 \%\)
at \(1 \mathrm{k} \Omega\) load

\section*{Directive:}

EMC Directive: 2014/30/EU*
Low Voltage Directive: 2014/35/EU
*minimum deviations possible during HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 40 housing
IP 20 clamps
Rail-mounting fixed according to
EN 50022-35 x 6,2 mm
Width: \(\quad 22,5 \mathrm{~mm}\)
Weight: \(\quad 170 \mathrm{~g}\)
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval: CE
Connection: pluggable screw clamps
\(0,2 \ldots 2,5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check switch position before initial operation!

\section*{Ordering information:}

\section*{Type:}

Output: 0 (4) . . . 20 mA and \(0(2) . . .10 \mathrm{~V}\) (factory sett.: \(4 . . .20 \mathrm{~mA}\) ), with clip-on sensor:
\begin{tabular}{lll} 
UW 13.00 GW 60 A & wide range & Sensor 60 A \\
UW 13.00 GW 100 A & wide range & Sensor 100 A \\
UW 13.00 GW 200 A & wide range & Sensor 200 A \\
UW 13.00 GW 400 A & wide range & Sensor 400 A \\
UW 13.00 GW 600 A & wide range & Sensor 600 A
\end{tabular}

Accessories:
USB2/ USB-Simulator with KALIB-Software

Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

\section*{FEATURES}

■ 1 input for AC current:
1 A AC, \(50 / 60 \mathrm{~Hz}\) or
5 A AC, \(50 / 60 \mathrm{~Hz}\)
- Outputs simultaneous: Voltage \(0(2) . . .10 \mathrm{~V}\) and Current 0(4)... 20 mA active or loop-powered

■ Function, switchable:
- fixed calibration or
- adjustable by trimmer or
- simulation mode for outputs

■ Galvanic 3-way isolation of \(2,5 \mathrm{kV}\)
Low internal consumption

\section*{FUNCTION}

Amplifiers are used for the galvanic isolation or conversion of analog signals. This guarantees a safe decoupling between sensor and evaluation circuit and any influence of other sensor circuit among each other is absolutely impossible. This Amplifier is equipped with one standard AC current input ( 1 A AC or 5 A AC ) as well as current and voltage outputs.


The TF 39.00 GW can be switched to different characteristics of transmission by front side turnswitch. Fixed calibrated measuring ranges for input and output are stored in switch setting \(0 . . .7\). In position 8 ...D the transmission ranges can be adjusted by zero point and range trimmer. A damping of 3 seconds is selectable in addition. Position E and F are used for simulation during initial operation, here a fixed output value can be generated by zero point and range trimmer, without input signal.



\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

Input:
\begin{tabular}{lll}
\hline I: AC current: & 1 AAC & max. \(2 \mathrm{AAC} / 5\) sec. \(50 / 60 \mathrm{~Hz}\) \\
connection: & terminal \(4 \sim, 5 \sim\) & \\
\hline \begin{tabular}{l}
\(\mathrm{U}: \mathrm{AC}\) current: \\
connection:
\end{tabular} & 5 AAC & max. \(10 \mathrm{AAC} / 5\) sec. \(50 / 60 \mathrm{~Hz}\) \\
& terminal \(4 \sim, 6 \sim\) &
\end{tabular}

\section*{Output:}

I: load-independent DC current: \(0(4) \ldots 20 \mathrm{~mA}\) terminal \(10-, 11+\)
or: loop-powered DC current: \(\quad 0(4) \ldots 20 \mathrm{~mA}\) max. permissible voltage 30 V connection:

U: load-independent DC voltage: terminal 9 -, \(12+\)
\(0(2) \ldots 10 \mathrm{~V} \quad\) permissible load \(\geq 2 \mathrm{k} \Omega\)
connection:
terminal \(7-, 8+\)
The maximum limits for current- and voltage output are fixed at 22 mA respectively 11 V .

\section*{Adjustment:}

The characteristics of transmission are adjustable by front side turn-switch.


\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\) Operating temperature: \(\quad 0 . . .55^{\circ} \mathrm{C}\)
Isolation voltage:
2,5 kV eff. 1 sec. input-output \(2,5 \mathrm{kV}\) eff. 1 sec . auxiliary voltage

\section*{Auxiliary power:}
\begin{tabular}{ll} 
Wide range: & \begin{tabular}{l}
\(24 . .250 \mathrm{~V} \mathrm{DC}\) \\
\(90 . .253 \mathrm{~V} \mathrm{AC}\) \\
\\
\end{tabular} \\
\hline \begin{tabular}{l} 
Influence of \\
auxiliary power:
\end{tabular} & \(<0,1 \%\)
\end{tabular}

\section*{Characteristics of transmission:}

Transmission error: <1\%
Resolution: \(\quad 13\) bit
Linearity error: \(<1 \%\)
Temperature error: \(<200 \mathrm{ppm} / \mathrm{K}\)
Load influence \(\mathrm{I}: \quad<50 \mathrm{ppm}\)
of final value
Load influence \(\mathrm{U}: \quad<0,2 \%\) at \(2 \mathrm{k} \Omega\) load
damping:
\(0,5 . . .10 \mathrm{sec}\).

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & 2014/30/EU* \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 20 housing
\[
\text { IP } 20 \text { clamps }
\]

Rail-mounting fixed according to
EN \(50022-35 \times 7,5 \mathrm{~mm}\)
Width: \(\quad 22,5 \mathrm{~mm}\)
Weight: \(\quad 140 \mathrm{~g}\)
Material: \(\quad\) Polyamide PA
Flammability class: Vo (UL94)
Approval: CE
Connection: screw clamps \(\leq 2,5 \mathrm{~mm}^{2}\)

Please check switch position before initial operation!
Ordering information: \(\quad\) Type: TF \(39.00 \mathrm{GW} \quad\) wide range \begin{tabular}{l} 
\\
\hline
\end{tabular}

\section*{FEATURES}

\section*{■ Input:}

AC voltage up to 500 V AC, True RMS value recording
■ Output, simultaneous: Current 0(4)... 20 mA and Voltage 0(2)... 10 V

■ Galvanic 3-way isolation of 4 kV


\section*{FUNCTION}

The UW 13.01 GW is being used to convert a AC voltage signal into a standard signal.
It has an AC voltage input and an output for current and voltage simultaneous.
Indication of operating state is displayed by LED on front side.


\section*{UW 13.01 GW}

Connection diagram:


Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

\section*{Input:}
\begin{tabular}{ll}
\hline U: AC voltage: & max. \(500 \mathrm{VAC}, 50 \mathrm{~Hz}\) \\
& True RMS value recording
\end{tabular}

Customer specification of and input setting, e.g.
\begin{tabular}{ll} 
input: & \(0 \ldots . .20 \mathrm{~V} \mathrm{AC}\) \\
or input: & \(0 \ldots . .100 \mathrm{~V} \mathrm{AC}\) \\
or input: & \(0 \ldots . .400 \mathrm{~V} \mathrm{AC}\)
\end{tabular}
connection:
terminal 9, 10

\section*{Output:}

Customer specification, factory setting: 4... 20 mA
\begin{tabular}{lll} 
I: load-independent AC current: & \(0(4) \ldots 20 \mathrm{~mA}\) & permissible load max. \(500 \Omega\) \\
\hline U: load-independent AC voltage: & \(0(2) \ldots 10 \mathrm{~V}\) & permissible load \(\geq 5 \mathrm{k} \Omega\)
\end{tabular}

Display:
LED status: green, active input signal within range, ready for operation
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Environmental conditions:} \\
\hline Storage temperature: & \(-20 \ldots+70^{\circ} \mathrm{C}\) \\
\hline Operating temperature: & 0... \(55^{\circ} \mathrm{C}\) \\
\hline Isolation voltage: input/ outp & 4 kV eff. 1 sec . ut/ auxiliary vol \\
\hline \multicolumn{2}{|l|}{Auxiliary power:} \\
\hline Wide range: & 24... 250 V DC \\
\hline & \(90 . . .253 \mathrm{~V} \mathrm{AC}\) \\
\hline & \(<3 \mathrm{~W}\) \\
\hline Infl. of auxiliary power: & <0,1 \% \\
\hline
\end{tabular}

\section*{Characteristics of transmission:}

Transmission error:
Linearity error:
Resolution:
Temperature error:
Load influence I:
Load influence U:
Set time:
\(<1 \%\) of final value
\(\pm 0,1 \%\)
10 bit
< 100 ppm/K
< 50 ppm
of final value
\(<0,2 \%\) at \(1 \mathrm{k} \Omega\) load
4 sec. factory set
(0,5... 64 sec. possible)

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & 2014/30/EU* \\
Low Voltage Directive: & 2014/35/EU \\
*minimum deviations possible during
\end{tabular}
*minimum deviations possible during
HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail Type of protection: IP 40 housing IP 20 clamps
Mounting rail fixed according to
EN \(50022-35 \times 6,2 \mathrm{~mm}\)
Width: \(\quad 22,5 \mathrm{~mm}\)
Weight: \(\quad 170 \mathrm{~g}\)
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval: CE
Connection: pluggable
screw clamps
\(0,2 \ldots 2,5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check switch position before initial operation!
\begin{tabular}{lll|} 
Ordering information: & Type: UW 13.01 GW & wide range \\
Please specify input- and output signal in & & \\
clear text, e.g.: & & \\
Input: \(0 \ldots . .10 \mathrm{~V} \mathrm{AC}\), output: \(4 . .20 \mathrm{~mA}\) & & \\
& & \\
\end{tabular}

\section*{Temperature and Resistance}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Title & \multicolumn{1}{l|}{\begin{tabular}{l} 
Specification
\end{tabular}} & \begin{tabular}{l} 
PC- \\
Inter- \\
face
\end{tabular} & \begin{tabular}{l} 
Available \\
designs
\end{tabular} & Auxiliary power \\
\hline MEASURING TRANSDUCER FOR TEMPERATURE SENSORS
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(2 \times 8\)-digit LCD-display, scalable analog output, transmitter feeding, sensor inputs I, U, PT \(100,0 . .100 \mathrm{~V}, 0 . . .50 \mathrm{mV}\), thermocouples, etc., parameterizable} \\
\hline DGS 4.00 GW & \begin{tabular}{l}
input 1: PT 100, PT1000, NI, KTY, thermocouples, resistance, \\
input 2: 0 (4) ... \(20 \mathrm{~mA} / 0\) (2) ... 10 V \\
output: 4 relays \(=4\) changer, \(\mathrm{I} / \mathrm{U}\)
\end{tabular} & X & G 45 & 20...30 V DC/ AC & 03-53 \\
\hline DGS 6.00 GW & \begin{tabular}{l}
input 1: PT 100, PT1000, NI, KTY, thermocouples, \\
resistance, \\
input 2: 0 (4)... \(20 \mathrm{~mA} / 0(2) \ldots 10 \mathrm{~V}\) \\
output: 6 relays \(=6\) changer, I/ U
\end{tabular} & X & G 45 & 90... 253 V AC & 03-53 \\
\hline
\end{tabular}

\section*{More devices see back page}

\footnotetext{
* Designs: \(\quad G=\) housing,
\(\mathrm{T}=\) housing for door installation,
\(E=\) eurocard
}

Year
Warranty

\section*{Temperature and Resistance}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Title & Specification & \begin{tabular}{l} 
PC- \\
Inter- \\
face
\end{tabular} & \begin{tabular}{l} 
Available \\
designs
\end{tabular} & Auxiliary power & Page \\
\hline
\end{tabular}

ISOLATING TRANSDUCER FOR POTENTIOMETERS
2-wire, 3-wire and 4-wire
\begin{tabular}{|c|c|c|c|c|c|}
\hline WU 39.00 GW & input switchable: e.g. 1K, 10K, 50K, 1M0hms, 0... 100 \%, 0... \(80 \%\), output simultaneous: 0 (4)... 20 mA and \(0(2) . . .10 \mathrm{~V}\) & & G 22,5 & 24... 250 V DC, 90... 253 V AC & 08-11 \\
\hline WU 39.04 GW & input switchable. 2-wire: 0 ... 2 k0hms/ \(0 . . .10\) k0hms, 0... 20 kOhm/ 0... 10 kOhm, output simultaneous: 0 (4)... 20 mA and \(0(2) \ldots 10 \mathrm{~V}\) & & G 22,5 & 24... 250 V DC, 90... 253 V AC & 08-13 \\
\hline MU 1.00 GW & input: PT 100, PT 500, PT 1000, NI 1000, different KTY, poti up to 5 kOhms, thermocouples(2) J, K, T, R, S, B, E, L, etc. connection: 2-, 3- and 4-wire, alarm function, detection of sensor break and shortcircuit, temperature decrease, trend function output: 0 (4) ... 20 mA or \(0(2) \ldots 10 \mathrm{~V}, 2\) closer as limit switch, parameterizable & X & G 22,5 & 24... 250 V DC, 90... 253 V AC & 08-01 \\
\hline MU 1.00 S & input: PT 100, PT 1000, NI 1000, different KTY, poti up to 5 kOhms, thermocouples(2) J, K, T, R, S, B, E, etc. connection: 2-, 3- and 4-wire, alarm function, detection of sensor break and shortcircuit, temperature decrease, trend function output: 0(4)... 20 mA or \(0(2) . . .10 \mathrm{~V}\), parameterizable & X & G 6,2 & 20... 30 V DC & 08-03 \\
\hline
\end{tabular}

\section*{FEATURES}

\section*{■ Input:}

PT 100, NI 1000, PTC, KTY, thermocouples, poti \(0 . . .5 \mathrm{k} \Omega\), other sensors via software

■ Output: 0(4)... \(20 \mathrm{~mA} / 0(2) . . .10 \mathrm{~V}\)
■ 2 relays, function selectable
- Detection of sensor break and short-circuit
- Redundant measurement at thermocouples possible
■ Int./ ext. cold-junction compensation
■ Parameterization without auxiliary power via PC-interface
- Galvanic 3-way isolation of 4 kV

\section*{FUNCTION}

The MU 1.00 GW is processing sensor signals and is used for the precise measurement of virtually all temperature sensors. Measurements of temperatures within a range of -200 and \(+2400{ }^{\circ} \mathrm{C}\) can be made, for example in air-conditioning and process engineering. Sensor break and sensor short-circuit are signalized and can be used as safety functions. By PT-sensors different connections can be selected: 2-, 3-, 4-wire system. The measuring line of the 3or 4-wire connection is detected on wire break or short-circuits.


Further temperature sensor cams can be produced by a table of value and assigned to the transducer by the USB2 Interface in connection with KALIBSoftware. Higher functional safety offers the redundant connection of thermocouples to the transducer. Indication of status is signalized by a front sided LED. The integrated protective switching with suppressor diode protects the secondary circuit from voltage peaks and transient excess voltage.
2 relays for error evaluation, limit value monitoring and tendency function are available. Switching status of the relays are signalized by LEDs on front side.



\section*{MU 1.00 GW}

Connection diagram:


Resistance,
Poti, KTY


\section*{Schuhmann GmbH \& Co. KG \\ Römerstraße 2 \\ D-74363 Güglingen \\ Tel. +4971355056 \\ E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de}

Input:
\begin{tabular}{lcc} 
Sensor & Measurement range & Additional temperature sensor cams can be created by \\
Type B & \(400 \ldots . .1820^{\circ} \mathrm{C}\) & using KALIB-Software. \\
Type C & \(400 \ldots 2300^{\circ} \mathrm{C}\) & \\
Type D & \(400 \ldots . .2400^{\circ} \mathrm{C}\) & Temperature compensation: \\
Type E & \(-200 \ldots 1000^{\circ} \mathrm{C}\) & - internal: \(\pm 1 \mathrm{~K}\) typ., max \(\pm 1,2 \mathrm{~K}\) \\
Type J & \(-200 \ldots . .1200^{\circ} \mathrm{C}\) & - external: at high temperature \\
Type K & \(-200 \ldots 1372^{\circ} \mathrm{C}\) & thermocouples recommended \\
Type L & \(-200 \ldots 900^{\circ} \mathrm{C}\) & \\
Type N & \(-200 \ldots 1300^{\circ} \mathrm{C}\) & Redundancy at thermocouples: \\
Type R & \(-50 \ldots . .1760^{\circ} \mathrm{C}\) & - thermocouple TC1 has priority over TC2 \\
Type S & \(-50 \ldots .1760^{\circ} \mathrm{C}\) & - at deviation TC1 to TC2 \(>30^{\circ} \mathrm{C}\) \\
Type T & \(-200 \ldots 400^{\circ} \mathrm{C}\) & warning via LED
\end{tabular}

KTY 81-110.., KTY 82-122..
KTY 83-110.., KT 100/110/130
KT 210/230, KTY 10/11/13-5..
KTY 21/23-5..
\(-58 \ldots . .150^{\circ} \mathrm{C}\)

PTC

\[
\begin{array}{ll}
\text { Input resistance: } & \begin{array}{l}
\text { approx. } 1 \mathrm{M} \Omega \text { at } \\
\text { thermocouples }
\end{array} \\
\text { Sampling cycle: } & \begin{array}{l}
\text { approx. } 100 \mathrm{~ms} \text { int. } \\
\text { approx. } 0,5 \mathrm{~Hz}
\end{array} \\
\text { limiting frequency: }
\end{array} \begin{aligned}
& \text { connection: } \\
& \\
& \\
& \\
& \text { terminal } 9,10,11,12 \\
& \text { PT- 2/3/4 wire, at 2-wire measure- } \\
& \text { ment with offset correction }
\end{aligned}
\]

\section*{Output:}
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
I: Ioad-independent DC current: \\
connection:
\end{tabular} & \begin{tabular}{l}
\(0(4) \ldots 20 \mathrm{~mA}\) \\
terminal \(3-, 4+\)
\end{tabular} & permissible load max. \(680 \Omega\) \\
\hline \begin{tabular}{l} 
U: Ioad-independent DC voltage: \\
connection:
\end{tabular} & \begin{tabular}{l}
\(0(2) \ldots 10 \mathrm{~V}\) \\
terminal \(3-, 4+\)
\end{tabular} & permissible load \(\geq 2 \mathrm{k} \Omega\) \\
\hline Relay A/ B: & 1 NO contact per relay & \\
\begin{tabular}{ll} 
max. switching current/ -voltage: & \(6 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC}\)
\end{tabular} \\
\begin{tabular}{ll} 
Mechanical/ contact lifetime: & \(30 \times 10^{6} \mathrm{cycles} / 10^{5}\) cycles
\end{tabular}
\end{tabular}

\section*{Adjustment:}

Measuring ranges and parameterization are adjustable by KALIB-Software. For this you need a PC as well as the interface adapter USB2/ USB-Simulator with KALIB-Software.
Display:
\begin{tabular}{lll}
\hline LED status & \begin{tabular}{l} 
green, active \\
yellow, active \\
red, active
\end{tabular} & \begin{tabular}{l} 
input signals are in standard range, device ready for use \\
failure output signal, warning message \\
failure e.g. sensor break, short-circuit, sensor failure
\end{tabular} \\
LED relay A: & \begin{tabular}{l} 
green, active \\
grelay A is closed
\end{tabular} \\
LED relay B: active & green B is closed
\end{tabular}

\section*{Environmental conditions:}
\(\begin{array}{ll}\text { Storage temperature: } & -40 \ldots+70^{\circ} \mathrm{C} \\ \text { Operating temperature: } & 0 \ldots . .55^{\circ} \mathrm{C}\end{array}\)
Isolation voltage:

> 4 kV eff. 1 sec. input-output
> 4 kV eff. 1 sec. auxiliary voltage

\section*{Auxiliary power:}
\begin{tabular}{ll} 
Wide range: & \begin{tabular}{l}
\(24 \ldots 250 \mathrm{VDC}\) \\
\(90 \ldots 253 \mathrm{VAC}\) \\
\(<3 \mathrm{~W}\)
\end{tabular} \\
& \\
Influence of & \(<0,1 \%\) \\
auxiliary power: & \(<0,12 \%\) \\
Characteristics of transmission:
\end{tabular}

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & 2014/30/EU* \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 40 housing IP 20 clamps
Mounting rail fixed according to
EN 50022-35 x 6,2 mm
Width:
\(22,5 \mathrm{~mm}\)
Weight: \(\quad 180 \mathrm{~g}\)
Material: Polyamide PA
Flammability class: Vo (UL 94)
Approval:
Connection:
plugg. screw clamps \(\leq 2,5 \mathrm{~mm}^{2}\)
Please check parameterization before initial operation!

\section*{Ordering information:}

Type: MU 1.00 GW wide range
Accessories: USB2/ USB-Simulator with KALIB-Software

\section*{FEATURES}

\section*{■ Input:}

PT 100, PT 500, PT 1000, NI 500, NI 1000, PTC, KTY, thermocouples e.g. type J, K, L, N, S, Poti \(0 . . .5\) k \(\Omega\), other Sensors via Software

■ Output: 0(4)... \(20 \mathrm{~mA} / 0(2) . .10 \mathrm{~V}\)
- Detection of sensor break and short-circuit
- Redundant measurement at thermocouples possible
■ Int./ext. cold-junction compensation
- Parameterization without auxiliary power via PC-interface

■ Galvanic 3-way isolation of 2,5 kV

\section*{FUNCTION}

The MU 1.00 S is processing sensor signals and is used for the precise measurement of virtually all temperature sensors. Measurements of temperatures within a range of -200 and \(+2400^{\circ} \mathrm{C}\) can be made, for example in air-conditioning and process engineering. Sensor break and sensor short-circuit are signalized and can be used as safety functions. By PT-sensors different connections can be selected: 2-, 3-, 4-wire system. The measuring line of the 3or 4 -wire connection is detected on wire break or short-circuits.


Further temperature sensor cams can be produced by a table of value and assigned to the transducer by the USB2 Interface in connection with KALIBSoftware. Higher functional safety offers the redundant connection of thermocouples to the transducer. Indication of status is signalized by front sided LED. The integrated protective switching with suppressor diode protects the secondary circuit from voltage peaks and transient excess voltage.





4-wire


3-wire


2-wire


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
Fax + 4971355355
www.schuhmann-messtechnik.de
}

\section*{FEATURES}

■ Input, switchable: PT 100, PT 500, PT 1000, Ni 1000, resistor up to \(5 \mathrm{k} \Omega\) in 2-, 3- or 4-wire technology
■ Output, simultaneous: Current 0(4)... 20 mA (active or passive) and Voltage 0(2)... 10 V
- Potential-free relay output for the detection of sensor errors
- Range, limit and offset setting options
■ Galvanic 4-way isolation

\section*{FUNCTION}

The MPU 1.00 GW is processing PT 100, PT 500, PT 1000 and Ni 1000 signals as well as resistors up to \(5 \mathrm{k} \Omega\).
It is used for the precise measurement of temperature with resistance thermometers in 2-, 3- or 4-wire technology.
Its outputs can do current (active or passive) and voltage simultaneous.
Additionally adjustable are minimum and maximum limits for the output signal.
A potential-free relay is available for the monitoring of sensor errors, which can be operated inverted or non-inverted.


The selection of the values, the operation/setting/ parameterization for

Input:
- measuring and temperature range
- 2-, 3-, 4-wire
- zero point correction for 2-wire measurement Output:
- minimum and maximum limits
- relay (inverted or non-inverted)
is made either with the front panel push-buttons with inclusion of the display, or with the USB2 interface adapter resp. USB-Simulator in connection with the KALIB-Software.


\begin{tabular}{l} 
adjustable \\
range
\end{tabular}
\begin{tabular}{l} 
Actual value display as \\
well as error indication \\
（Err）for sensor error
\end{tabular}
\begin{tabular}{l} 
Out of range
\end{tabular}
\begin{tabular}{l} 
Output sensor error \\
relay switching status \\
（can also be switched in error－free \\
state \(->\) inverted）
\end{tabular}

parameterizing
mode
parameterizing
mode

e．g．2．drA：
The two－wire technique is used as the measuring method．
e．g．+10.0 ：
Shifting of the measuring zero point by the set value．
e．g．20：
Measurement initial value is \(20^{\circ} \mathrm{C}\) ．
e．g．100：
Measurement end value is \(100^{\circ} \mathrm{C}\) ．

Presetting of all important parameters．

Selection of the right tem－ perature sensor basically for the calculation of the current temperature．

In three or four－wire operation，the line resistance can be auto－ matically calculated and corrected．

The measuring zero point can be shifted for example in the two－wire technique for correction of the line resistances．

When the adjusted temperature is measured， the analogue output is set to the value which is adjusted under＂initial／ end value output signal＂．

\footnotetext{
\({ }^{* 1}\) There is a constant change between the actual indicated value and the display of the menu item
}


OVERVIEW-MENU
\begin{tabular}{|c|c|c|c|c|}
\hline adjustable range & function & display*1 & example & description \\
\hline & &  & & \\
\hline "on.Er" / "oF.Er" & Relay state at sensor error. [Relay] & \[
\leftarrow \uparrow \underbrace{\Gamma E!}_{\vec{\downarrow})}
\] & e.g. "on.Er": Relay contact closes at sensor error & Relay state at sensor error -> can be operated inverted or non-inverted. \\
\hline & End [End] & End & & \begin{tabular}{l}
End of parameterization mode \\
-> back to display mode
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
\({ }^{* 1}\) There is a constant change between the actual indicated value and the display of the menu item.
}


\section*{MPU 1.00 GW}

Connection diagram:


Input sensor:
PT100 / PT500 / PT1000 / Ni1000 / R 5 k


4-wire


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

\section*{Input:}
temperature sensor:
ranges:
connection:

PT100, PT500, PT1000, Ni1000, R 5 k 2 in 2-/ 3- or 4-wire PT100/ 500/ 1000: - \(199 \ldots+849^{\circ} \mathrm{C}\) Ni1000: \(-58 \ldots+208^{\circ} \mathrm{C}\)
\[
\text { R } 5 \text { k } \Omega: 0 \text { :... } 5250 \Omega
\]
\[
\text { terminal 5, 6, 7, } 8
\]

\section*{Output:}
\begin{tabular}{lll} 
I: Ioad-independent DC current: & \(0(4) \ldots 20 \mathrm{~mA}\) & permissible load max. \(500 \Omega\) \\
\begin{tabular}{l} 
connection: \\
or:
\end{tabular} & \begin{tabular}{ll} 
terminal \(9-, 10+\)
\end{tabular} \\
\begin{tabular}{ll} 
loop-powered DC current: & \(0(4) \ldots 20 \mathrm{~mA}\)
\end{tabular} & \\
& max. permissible voltage 30 V
\end{tabular}

Caution: do not use output I active (load-independent)and I passive (loop pow.) at the same time!
U: load-independent \(D C\) voltage: \(\quad 0(2) \ldots 10 \mathrm{~V} \quad\) permissible load \(\geq 3 \mathrm{k} \Omega\) simultaneous connection: terminal \(11-, 12+\quad \geq 1 \mathrm{k} \Omega\) exclusive
The maximum limits for current and voltage output are fixed at \(21,4 \mathrm{~mA}\) respectively \(10,7 \mathrm{~V}\). The maximum load for the relay sensor error is \(50 \mathrm{~mA} / 100 \mathrm{~V}\).
Adjustment:
The parameterization will be carried out for commissioning via the front-panel push-buttons or the KALIB-Software (see "OVERVIEW-MENU"). For this you need a PC as well as the interface adapter USB2/ USB-Simulator with KALIB-Software.
- [5 E n S] -> Selection of sensor (PT100, PT500, PT1000, Ni1000, R 5 k \(\Omega\) )
\(-[\) [dr R t ] \(\rightarrow\) Setting of the measuring method (2-/ 3- oder 4-wire technology)
\(-[t E . o F] \rightarrow\) Temperature offset value in \({ }^{\circ} \mathrm{C}\)
\(-[1 \cap P\).\(] . \rightarrow\) Measurement initial value of the input signal in \({ }^{\circ} \mathrm{C}\)
\(-\left[1 \cap P^{-}\right]->\)Measurement end value of the input signal in \({ }^{\circ} \mathrm{C}\)
- [d, S P] -> Display for analogue output (U [V]/ / [mA]/ \%)
\(-[o . i \cap F]->\) Initial value output signal (U[V]/I [mA]/ \%)
- [o. End \(]\)-> End value of the output signal (U [V]/I [mA]/ \%)
\(-[\) o.L. \(] \rightarrow\) minimum output signal (U \([\mathrm{V}] / I[\mathrm{~mA}] / \%)\)
- [o. L, \(\left.{ }^{-}\right]\)-> maximum output signal (U [V]/ I [mA]/ \%)
- [UII.Er] \(\rightarrow\) Output signal at sensor error (U [V]/I [mA]/ \%)
- [dR:i, \(]\)-> Damping of the input signal in sec.
- [ \(r\) El] \(\quad \rightarrow\) Relay status at sensor error (inverted or non-inverted)

Factory setting: sensor PT 100; measuring range \(0 . . .100^{\circ} \mathrm{C} \xlongequal{\text { 气 }}\) output \(0,0 . . .20,0 \mathrm{~mA}\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Environmental conditions:} & \multicolumn{2}{|l|}{Directive:} \\
\hline \multirow[t]{5}{*}{Storage temperature: Operating temperature: Isolation voltage:} & \multirow[t]{5}{*}{\begin{tabular}{l}
\[
\begin{aligned}
& -40 \ldots+70^{\circ} \mathrm{C} \\
& 0 \ldots 55^{\circ} \mathrm{C}
\end{aligned}
\] \\
4 kV eff. 1 sec . auxiliary power 2,5 kV eff. 1 sec . input-output-relay
\end{tabular}} & EMC Directive: & 2014/30/EU* \\
\hline & & Low Voltage Directive: & 2014/35/EU \\
\hline & & *minimum deviations pos HF-radiation influence & be during \\
\hline & & Mounting details: & \\
\hline & & Housing for top hat rail & \\
\hline \multicolumn{2}{|l|}{Auxiliary power:} & \multirow[t]{2}{*}{Type of protection:} & IP 30 housing \\
\hline \multirow[t]{3}{*}{Wide range:} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 24 . . .250 \mathrm{~V} \mathrm{DC} \\
& 90 \ldots .253 \mathrm{~V} \mathrm{AC} \\
& <3 \mathrm{~W}
\end{aligned}
\]} & & IP 20 screw clamps \\
\hline & & Mounting rail fixed acco & ding to \\
\hline & & EN 5002 & \(2-35 \times 7,5 \mathrm{~mm}\) \\
\hline \multirow[t]{2}{*}{Influence of auxiliary power:} & \multirow[b]{2}{*}{<0,1\%} & Width: & \(22,5 \mathrm{~mm}\) \\
\hline & & Weight: & 160 g \\
\hline \multicolumn{2}{|l|}{Characteristics of transmission:} & \multirow[t]{5}{*}{\begin{tabular}{l}
Material: \\
Flammability class: \\
Approval: \\
Connection:
\end{tabular}} & Polyamide PA \\
\hline Transmission error: & \multirow[t]{4}{*}{\(<0,2 \%\)
\(<0,2 \%\)
\(<100 \mathrm{ppm} / \mathrm{K}\)
\(<50 \mathrm{ppm}\)} & & V0 (UL94) \\
\hline Linearity error: & & & CE \\
\hline Temperature error: & & & screw clamps
\[
\leq 2 \times 2,5 \mathrm{~mm}^{2}
\] \\
\hline \multirow[t]{2}{*}{Load influence I:} & & & \\
\hline & \[
\begin{aligned}
& <50 \mathrm{ppm} \\
& \text { of final value }
\end{aligned}
\] & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.}} \\
\hline Load influence U: & \(<50 \mathrm{ppm}\) at \(1 \mathrm{k} \Omega\) load & & \\
\hline Setting time: & \(<500 \mathrm{msec}\). & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Ordering information:}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Type: MPU 1.00 GW wide range Accessories: USB2/ USB-Simulator with KALIB-Software}} \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{FEATURES}

■ 1 Input, switchable: for 2- and 3-wire resistance transmitter
- Output, simultaneous: Current 0(4)... 20 mA and
Voltage 0(2)... 10 V
- Fine-adjustment of offset and gain by trimmer

Galvanic 3-way isolation


The desired adjustments can be chosen from the table on the side and switched to different characteristics of transmission by turn-switch on front side. The device is equipped with a simultaneous output for current and voltage.


\section*{WU 39.00 GW}

Connection diagram:


Resistance input


2-wire


3-wire

Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de
www.schuhmann-messtechnik.de

Input:
Resistance sensor:
connection:
2-/ 3-wire switchable by turn switch terminal 3, 4, 5, 6

Adjustment:
Input ranges selectable by front side turn switch S1:
\begin{tabular}{|c|c|c|}
\hline Position & Range & Type \\
\hline 0 & \(0 \ldots .50 \mathrm{k} \Omega\) & 2-wire connection \\
4 & \(0 \ldots 10 \mathrm{k} \Omega\) & 2-wire connection \\
6 & \(0 \ldots .5 \mathrm{k} \Omega\) & 2-wire connection \\
7 & \(0 \ldots 1 \mathrm{k} \Omega\) & 2-wire connection \\
8 & \(200 \Omega \ldots 1 \mathrm{M} \Omega\) at \(0 \ldots 100 \%\) & 3-wire connection \\
\hline
\end{tabular}

Measuring range errors at change-over of the individual measuring ranges \(\leq 0,5 \%\).
Output:
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
I: Ioad-independent DC current: \\
connection:
\end{tabular} & \begin{tabular}{l}
\(0(4) \ldots 20 \mathrm{~mA}\) \\
terminal \(10-, 11+\)
\end{tabular} & permissible load max. \(580 \Omega\) \\
\hline U: Ioad-independent DC voltage: & \(0(2) \ldots 10 \mathrm{~V}\) & \begin{tabular}{l} 
permissible load \(\geq 5 \mathrm{k} \Omega\) at \\
simultaneous operation \\
permissible load \(\geq 1 \mathrm{k} \Omega\) exclusive
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Gain adjustment: & trimmer \(\pm 15 \%\) \\
Offset adjustment & trimmer \(\pm 30 \%\) \\
connection: & terminal \(7-8+\)
\end{tabular}

Output ranges switchable by connection of terminal \(9+12\) (Dead-/ Live-Zero):
\begin{tabular}{|c|c|c|}
\hline Terminal \(9 / 12\) & Output voltage & Output current \\
\hline Open \(^{*}\) & \(0 \ldots 10 \mathrm{~V}\) & \(0 \ldots .20 \mathrm{~mA}\) \\
\hline Closed \(^{2}\) & \(2 \ldots 10 \mathrm{~V}\) & \(4 \ldots .20 \mathrm{~mA}\) \\
\hline
\end{tabular}
* factory setting

Display:
LED status: green, active device ready for use

\section*{Environmental conditions:}
\begin{tabular}{ll} 
Storage temperature: & \(-40 \ldots+70^{\circ} \mathrm{C}\) \\
Operating temperature: & \(0 \ldots 55^{\circ} \mathrm{C}\) \\
Isolation voltage: & \\
4 kV eff. 1 sec. & input/ output \\
\(3,75 \mathrm{kV}\) eff. 1 sec. & auxiliary power
\end{tabular}

Auxiliary power:
\begin{tabular}{ll} 
Wide range: & \begin{tabular}{l}
\(24 . .250 \mathrm{~V} \mathrm{DC}\) \\
\\
\\
\\
\\
\\
\\
\(<0 . .253 \mathrm{~V} \mathrm{AC}\)
\end{tabular} \\
\begin{tabular}{l} 
Influence of \\
auxiliary power:
\end{tabular} & \(<0,1 \%\)
\end{tabular}

Characteristics of transmission:
Transmission error: \(<0,2 \%\)
Linearity error: \(\quad<0,2 \%\)
Temperature error: \(<100 \mathrm{ppm} / \mathrm{K}\)
Load influence l: \(<50 \mathrm{ppm}\)
of final value
Load influence U : \(\quad<50 \mathrm{ppm}\)
at \(1 \mathrm{k} \Omega\) load
Setting time:
\(<500 \mathrm{msec}\).

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & 2014/30/EU* \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 20 housing
\[
\text { IP } 20 \text { clamps }
\]

Rail-mounting fixed according to
EN 50022-35 x 7,5 mm
Width:
\(22,5 \mathrm{~mm}\)
Weight: \(\quad 140 \mathrm{~g}\)
Material: Polyamide PA
Flammability class: V0 (UL94)
Approval: CE
Connection: screw clamps
\(\leq 2,5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check switch position before initial operation!

\section*{FEATURES}

■ 1 Input, switchable: for 2-wire resistance transmitter
\(0 . . .2 \mathrm{k} \Omega / 0 . . .10 \mathrm{k} \Omega / 0 . . .20 \mathrm{k} \Omega /\)
\(0 . . .100 \mathrm{k} \Omega\)
- Output, simultaneous: Current 0(4)... 20 mA and
Voltage 0(2)... 10 V
- Fine-adjustment of offset and gain by trimmer

■ Galvanic 3-way isolation

On the input side there are the calibrated special measuring ranges \(0 \ldots 2 \mathrm{k} \Omega / 0 \ldots 10 \mathrm{k} \Omega / 0 \ldots 20 \mathrm{k} \Omega\) and \(0 . .100 \mathrm{k} \Omega\) available. These can be chosen from the table on the side and switched by turn-switch on front side.
The device is equipped with a simultaneous output for current and voltage.


\section*{FUNCTION}

The WU 39.04 GW converts the value of resistance input into a linear current and voltage signal and is used for e.g. analysis of position meters, filling-level meters etc. The line resistance can be compensated by a zero and range trimmer.
At the input a potentiometer or a resistance transmitter in 2-wire technique can be connected.


\section*{WU 39.04 GW}

Connection diagram:


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

Input:
Resistance sensor:
2-wire switchable by turn switch
terminal 3, 6

\section*{Adjustment:}

Input ranges selectable by front side turn switch S1:
\begin{tabular}{|c|c|c|}
\hline Position & Range & Type \\
\hline 0 & \(0 \ldots 100 \mathrm{k} \Omega\) & 2-wire connection \\
4 & \(0 \ldots .20 \mathrm{k} \Omega\) & 2-wire connection \\
6 & \(0 \ldots 10 \mathrm{k} \Omega\) & 2-wire connection \\
7 & \(0 \ldots .2 \mathrm{k} \Omega\) & 2-wire connection \\
\hline
\end{tabular}

Measuring range errors at change-over of the individual measuring ranges \(\leq 0,5 \%\).
Output:
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
I: Ioad-independent DC current: \\
connection:
\end{tabular} & \begin{tabular}{l}
\(0(4) \ldots 20 \mathrm{~mA}\) \\
terminal \(10-, 11+\)
\end{tabular} & permissible load max. \(580 \Omega\) \\
\hline U: Ioad-independent DC voltage: & \(0(2) \ldots 10 \mathrm{~V}\) & \begin{tabular}{l} 
permissible load \(\geq 5 \mathrm{k} \Omega\) at \\
simultaneous operation \\
permissible load \(\geq 1 \mathrm{k} \Omega\) exclusive
\end{tabular} \\
\begin{tabular}{ll} 
Gain adjustment: & trimmer \(\pm 15 \%\)
\end{tabular} & \\
\begin{tabular}{ll} 
Offset adjustment \\
connection: & trimmer \(\pm 30 \%\)
\end{tabular} &
\end{tabular}

Output ranges switchable by connection of terminal \(9+12\) (Dead-/ Live-Zero):
\begin{tabular}{|c|c|c|}
\hline Terminal 9/ 12 & Output voltage & Output current \\
\hline Open \(^{*}\) & \(0 \ldots .10 \mathrm{~V}\) & \(0 \ldots 20 \mathrm{~mA}\) \\
\hline Closed & \(2 \ldots .10 \mathrm{~V}\) & \(4 \ldots .20 \mathrm{~mA}\) \\
\hline
\end{tabular}
* factory setting

Display:
LED status: green, active device ready for use

\section*{Environmental conditions:}
\begin{tabular}{ll} 
Storage temperature: & \(-40 \ldots+70^{\circ} \mathrm{C}\) \\
Operating temperature: & \(0 \ldots 55^{\circ} \mathrm{C}\) \\
Isolation voltage: & \\
4 kV eff. 1 sec. & input/ output \\
\(3,75 \mathrm{kV}\) eff. 1 sec. & auxiliary power
\end{tabular}

Auxiliary power:
\begin{tabular}{ll} 
Wide range: & \begin{tabular}{l}
\(24 \ldots 250 \mathrm{~V} \mathrm{DC}\) \\
\\
\\
\\
\\
\\
\\
\(<0.253 \mathrm{~V} \mathrm{AC}\)
\end{tabular} \\
\begin{tabular}{l} 
Influence of \\
auxiliary power:
\end{tabular} & \(<0,1 \%\)
\end{tabular}

\section*{Characteristics of transmission:}
\begin{tabular}{ll} 
Transmission error: & \(<0,2 \%\) \\
Linearity error: & \(<0,2 \%\) \\
Temperature error: & \(<100 \mathrm{ppm} / \mathrm{K}\) \\
Load influence I: & \begin{tabular}{l}
\(<50 \mathrm{ppm}\) \\
of final value \\
\\
Load influence U: \\
\\
Setting time:
\end{tabular} \\
& \begin{tabular}{l}
\(<50 \mathrm{ppm}\) \\
at \(1 \mathrm{kS} \Omega \mathrm{load}\) \\
\end{tabular} \\
& \(<500 \mathrm{msec}\).
\end{tabular}

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & 2014/30/EU* \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during
HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 20 housing
\[
\text { IP } 20 \text { clamps }
\]

Rail-mounting fixed according to
EN 50022-35 x \(7,5 \mathrm{~mm}\)
Width:
\(22,5 \mathrm{~mm}\)
Weight: \(\quad 140 \mathrm{~g}\)
Material: \(\quad\) Polyamide PA
Flammability class: V0 (UL94)
Approval: CE
Connection: screw clamps
\(\leq 2,5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check switch position before initial operation!

\section*{Additional Devices}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Title & Specification & \begin{tabular}{l}
PC- \\
Inter- \\
face
\end{tabular} & Available designs & Auxiliary power & Page \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
USB INTERFACE ADAPTER \\
incl. the free „KALIB-Software" for common Windows Operating Systems on CD as well as for download. It supports (32-bit and 64-bit): Windows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1, Windows 10
\end{tabular}} \\
\hline USB2 & interface adapter with galvanic isolation of 3 kV & X & & & 09-01 \\
\hline USB-Simulator & \begin{tabular}{l}
\begin{tabular}{ll} 
input (metering): & \(-20 \ldots 0 . .+20 \mathrm{~mA} /-10 \ldots 0 \ldots+10 \mathrm{~V}\) \\
output (simulation): & \(0 \ldots 20 \mathrm{~mA}\) active \\
& \(0 \ldots 20 \mathrm{~mA}\) passive \\
& \(0 \ldots 10 \mathrm{~V}\) active
\end{tabular} \\
Interface for all parameterizable Schuhmann products, incl. measuring lines and case.
\end{tabular} & X & & & 05-01 \\
\hline
\end{tabular}

\section*{MEASUREMENT CONVERTER}

Temperature Frequency Converter, PT 100 input, parameterizable
\begin{tabular}{|l|l|c|c|c|c|}
\hline AF 29.01 GDC & \begin{tabular}{l} 
input \(1 / 2:-50 \ldots+500^{\circ} \mathrm{C}, \mathrm{PT} 100\) \\
output: transistor \(0 \ldots 5,5 \mathrm{kHz}\)
\end{tabular} & \(X\) & \(\mathrm{G} 22,5\) & \(20 \ldots 30 \mathrm{~V} \mathrm{DC}\)
\end{tabular}

\section*{MEASURING POINT SWITCH}
multiplexer for extending the analog inputs of a PLC, selection switch for displays
\begin{tabular}{|l|l|l|l|l|}
\hline MUX 25.00 MDC & \begin{tabular}{l} 
input: \(4 \mathrm{x} \pm 70 \mathrm{~mA}\) or \(\pm 12 \mathrm{~V}\), \\
channel selection by two address lines, \\
output: selected input
\end{tabular} & G 12,5 & 20...30 V DC
\end{tabular}

\section*{POWER SUPPLY}
output simultaneous: current max. 22 mA , voltage max. 26 V , integrated current and voltage limitation, supply of 2-, 3-and 4-wire transducers
\begin{tabular}{|l|c|c|c|c|}
\hline NG 15.00 MW & current: maximal 22 mA , voltage: maximal 26 V & & G 12,5 & \(24 \ldots 250 \mathrm{VDC}, 90 \ldots 253 \mathrm{VAC}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|l|}{ Process Indicator with Profibus Interface } \\
\hline BP-AZ 31 UC & 6-digit 7 segment LED display with 2 additional status LED's, red & & \(T\) & \(20 \ldots 30 \mathrm{~V} \mathrm{AC/DC}\) \\
\hline BP-AZ 31 UC-GR & \begin{tabular}{l} 
6-digit 7 segment LED display with 2 additional status LED's, \\
green
\end{tabular} & & T & \\
\hline
\end{tabular}

\footnotetext{
* Designs: \(\quad G=\) housing,
\(T=\) housing for door installation,
\(E=\) eurocard
}

Year
Warranty

\section*{FEATURES}

■ Galvanic isolation of 3 kV between PC and connected device

■ USB 2.0 B
- No additional auxiliary power required

■ Status indication via 3 LEDs
■ with driver and KALIB-Software, suitable for
Windows 8, 8.1, 10

\section*{FUNCTION}

To set up the parameterizable Schuhmann devices* the USB2 interface in connection with the KALIBSoftware is required. The current overview of these devices is available on our homepage.
The adapter serves as an interface between the PC and the connected device. The TTL signal of the Schuhmann device will be digitally prepared and then transferred by an optical coupler to the PC. With the KALIB-Software the following parameter can be defined: input, measuring start, measuring end, attenuation, failure limit etc. The settings can be saved in a file and easily transferred to further units.


Due to the galvanic isolation between device and computer potential delays as well as short-circuits of the normally earthed PC will be avoided.
Most of the devices to be programmed* are supplied with power via the USB2 interface.

Caution: KALIB-Software and the USB-Driver have to be installed before the adapter will be connected to the PC.


\section*{Input:}
USB2 interface for the connection with the PC.
Directly fed by PC:
\begin{tabular}{ll} 
auxiliary power: & \(5 \mathrm{~V} D C\) \\
current consumption: & max. 60 mA \\
protocol: & USB 2.0 B
\end{tabular}

\section*{Output:}

TTL- respectively USB interface for the connection with the PC:
\[
\begin{array}{ll}
\text { connections: } & \begin{array}{l}
3,5 \mathrm{~mm} \text { jack plug } \\
\text { mini-USB }
\end{array}
\end{array}
\]

Display:
\begin{tabular}{lll} 
LED RDY: & green, active & USB communication with the PC in order (driver loaded) \\
LED TXD: & red, active & data sent from PC to the device \\
LED RXD & red, active & PC receives data from the device
\end{tabular}

\section*{Included in delivery:}
\begin{tabular}{ll} 
USB-Adapter: & USB2 \\
PC-cable: & USB-cable type A/B (length approx. 2 m ) \\
Device-cable: & mini-USB-cable type A/B (length approx. 2 m ) \\
Software: & KALIB-Software (parameterization software) \\
& USB driver \\
& (suitable for Windows 8, 8.1, 10; each with 32- and 64-bit)
\end{tabular}


Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

\section*{FEATURES}

■ 2 Inputs:
PT 100, 3-wire
■ 2 Outputs: transistor output 24 V to 5 kHz
■ Indication of operation condition by 2 color LED per channel

■ Parameterization via PC-interface
- Galvanic 2-way isolation of 4 kV

\section*{FUNCTION}

The Temperature Frequency Converter is used to convert a PT 100 value of resistance into a frequency. Both 3 -wire inputs the PT 100 value of resistance get collected and digitised. The measured values will be linearised and scaled according to the settings. This value is being converted into a continuous frequency which can subsequent processed as a 24 V signal at the output by a optocoupler.


With the USB2 Interface in connection with KALIBSoftware a frequency range between 0 ... 5000 Hz for \(-50^{\circ} \mathrm{C}\) (zero point) plus \(500^{\circ} \mathrm{C}\) (terminal value) can be selected.
The frequency for sensor break/ short-circuit is adjustable.
The AF 29.01 GDC has 2 transistor outputs whose indication of operation is displayed by 2 LEDs on front side.


\section*{AF 29.01 GDC}

Connection diagram:


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

\section*{Input:}
\(2 \times\) temperature:
\begin{tabular}{ll} 
Type: & PT 100,3 -wire \\
Measuring range: & \(-50 \ldots 0 \ldots 500^{\circ} \mathrm{C}\) \\
measuring current: & approx. 2 mA \\
connection channel 1: & terminal \(7(-R), 8\) (sense), \(9(+R)\) \\
connection channel 2: & terminal \(10(-R), 11\) (sense), \(12(+R)\)
\end{tabular}

\section*{Output:}
\(2 \times\) transistor output:
load:
connection channel 1:
connection channel 2 :

24 V DC output signal, galvanic connected with the auxiliary power max. 50 mA terminal 1-, \(3+\)
terminal 1-, \(6+\)

\section*{Adjustment:}

Measuring ranges, switching points and parameterization are adjustable by KALIB-Software. For this you need a PC as well as the interface adapter USB2/ USB-Simulator with KALIB-Software.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Environmental conditions:} & \multicolumn{2}{|l|}{Directive:} \\
\hline \multirow[t]{3}{*}{Storage temperature: Operating temperature: Isolation voltage:} & \multirow[t]{3}{*}{\begin{tabular}{l}
\[
\begin{aligned}
& -40 \ldots+70^{\circ} \mathrm{C} \\
& 10 \ldots . .55^{\circ} \mathrm{C}
\end{aligned}
\] \\
4 kV eff. 1 sec . input-auxiliary power
\end{tabular}} & EMC Directive: & 2014/30/EU* \\
\hline & & Low Voltage Directive: & 2014/35/EU \\
\hline & & \multicolumn{2}{|l|}{*minimum deviations possible during HF-radiation influence} \\
\hline \multirow[t]{3}{*}{Auxiliary power: 24 V DC:} & & \multicolumn{2}{|l|}{Mounting details:} \\
\hline & \[
\begin{aligned}
& 20 \ldots . .30 \mathrm{VDC} \\
& <3 \mathrm{~W}
\end{aligned}
\] & Housing for top hat rail Type of protection: & \\
\hline & \[
<3 \text { W }
\] & Type of protection: & IP 20 housing IP 20 clamps \\
\hline Influence of auxiliary power: & <0,1\% & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Rail-mounting fixed according to}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Characteristics of transmission:}} & & \\
\hline & & \multirow[t]{6}{*}{\begin{tabular}{l}
Width: \\
Weight: \\
Material: \\
Flammability class: \\
Approval: \\
Connection:
\end{tabular}} & \(22,5 \mathrm{~mm}\) \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
Transmission error: \\
Linearity error: \\
Temperature error: Setting time:
\end{tabular}} & \multirow[t]{6}{*}{\[
\begin{aligned}
& <0,1 \% \\
& <0,3 \% \\
& <100 \mathrm{ppm} / \mathrm{K} \\
& <2 \mathrm{sec} .
\end{aligned}
\]} & & 140 g \\
\hline & & & Polyamide PA \\
\hline & & & Vo (UL94) \\
\hline & & & CE \\
\hline & & & screw clamps
\[
\leq 2,5 \mathrm{~mm}^{2}
\] \\
\hline & & \multicolumn{2}{|l|}{For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other. Please check switch position before initial operation!} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Ordering information:}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Type: AF 29.01 GDC 24 VDC \\
Accessories: USB2/ USB-Simulator with KALIB-Software
\end{tabular}}} \\
\hline & & & \\
\hline
\end{tabular}

\section*{FEATURES}

■ 4 inputs:
current \(\pm 70 \mathrm{~mA}\) or
voltage \(\pm 12 \mathrm{~V}\)
- 1 output

■ Switch by 2 control signals
■ Galvanic 2-way isolation of \(2,5 \mathrm{kV}\)


The output is galvanically connected with the input. Auxiliary power/ channel selection are galvanically isolated across from the input/ output.

\section*{FUNCTION}

The multiplexer MUX 25.00 MDC provides the expandability of the analog inputs at a PLC.
It has 4 inputs which can process analog signals like currents and voltages.
Because of the channel selection by two address lines (e.g. 2 digital PLC outputs) is one of the 4 inputs connected trough to the output.
\[
\text { Auxiliary power: 20... } 30 \text { V DC }
\]



\section*{MUX 25.00 MDC}

Connection diagram:


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

\section*{Input:}

4 inputs E1-E4 usable as current or voltage input:
\begin{tabular}{ll} 
I: current: & \(\pm 70 \mathrm{~mA}\) \\
U: direct voltage: & \(\pm 12 \mathrm{~V}\) \\
signal limitation: & \(\pm 12 \mathrm{~V}\) \\
connection E1: & terminal \(11-, 7+\) \\
connection E2: & terminal \(11-, 8+\) \\
connection E3: & terminal \(12-, 9+\) \\
connection E4: & terminal \(12-, 10+\)
\end{tabular}

\section*{Adjustment:}

The channel selection is made by the input A0 and A1:
demanded signal:
switching time:
connection A 0:
connection A 1:

In case of working resistance the control response time has to be considered.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Selected \\
input
\end{tabular} & \begin{tabular}{c} 
Control input \\
A1
\end{tabular} & \begin{tabular}{c} 
Control input \\
A0
\end{tabular} \\
\hline E 1 & 0 V & 0 V \\
\hline E 2 & 0 V & 24 V \\
\hline E 3 & 24 V & 0 V \\
\hline E 4 & 24 V & 24 V \\
\hline
\end{tabular}

\section*{Output:}

Selected input is being put trough to the output directly. connection: terminal \(5-, 6+\)

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(\quad 10 \ldots . .55^{\circ} \mathrm{C}\)
Isolation voltage:
\(2,5 \mathrm{kV}\) eff. 1 sec .
input/ output
to auxiliary power/ channel selection

\section*{Auxiliary power:}

24 V DC:
20... 30 V DC
\(<3\) W
Characteristics of transmission:
\begin{tabular}{ll} 
Setting time: & \(<2\) msec. \\
Internal resistance: & approx. 30 hm
\end{tabular}

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & \(2014 / 30 / E U^{*}\) \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 30 housing
IP 20 clamps
Mounting rail fixed according to
EN 50022-35 x 7,5 mm
Width:
90 g
Polyamide (PA)
V0 (UL94)
CE
pluggable
screw clamps
0,2...2,5 mm²
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.

Type: MUX 25.00 MDC \(24 V D C\)

\author{
FEATURES \\ ■ Output: \\ Current max. 22 mA \\ Voltage max. 26 V \\ ■ Intergrated current and voltage limitation \\ ■ Supply of 2-, 3- and 4-wire transducers \\ ■ Pluggable screw-clamps \\ ■ Galvanic 2-way isolation
}


The feeding device consists of a built-in current source with integrated limiting which provides auxiliary power for the transducer to be connected

There is a limit to the no-load voltage at 26 V DC. In order to make the respective input short-circuit proof, the electronically limited current source is limiting its output signal - according to type of device - at 22 mA .

The limitation of open-circuit voltage takes place at 26 V DC


\section*{NG 15.00 MW}

Connection diagram:


Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

\section*{Output:}

I: maximal 22 mA

U: maximal 26 V
Connection: terminal \(7-8+\)

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(\quad-40 \ldots+55^{\circ} \mathrm{C}\)
Isolation voltage:
2,5 kV eff. 1 sec. input/ output
4 kV eff. 1 sec . auxiliary power

\section*{Auxiliary power:}
\begin{tabular}{ll} 
Wide range: & \(24 \ldots 250 \mathrm{~V} \mathrm{DC}\) \\
& \(90 \ldots 253 \mathrm{~V} \mathrm{AC}\) \\
& \(<3 \mathrm{~W}\) \\
Influence of aux. power: & \(<0,1 \%\)
\end{tabular}

\section*{Directive:}

EMC Directive:
2014/30/EU*
Low Voltage Directive: 2014/35/EU
*minimum deviations possible during
HF-radiation influence

\section*{Mounting details:}

Housing for top hat rail
Type of protection: IP 30 housing
IP 20 clamps
Rail-mounting fixed according to
EN 50022-35 x \(7,5 \mathrm{~mm}\)
Width: \(\quad 12,5 \mathrm{~mm}\)
Weight: \(\quad 90 \mathrm{~g}\)
Material: Polyamide (PA)
Flammability class: Vo (UL94)
Approval: CE
Connection: pluggable
screw clamps
\(0,2 \ldots 2,5 \mathrm{~mm}^{2}\)
For safety reasons we recommend to mount the housing for top hat rail with a distance of approx. 5 mm to each other.

\section*{FEATURES}

■ 6-digit 7 segment LED display with 2 additional status LED's

■ Display red or green
- Communication via Profibus-DP 9,6 kBaud... 12 MBaud

■ Slave-address adjustable on reverse
■ Galvanic 3-way isolation

\section*{FUNCTION}

The BP-AZ 31UC is suited for the direct connection to a Profibus-DP network which can be applied in plant engineering and construction as well as mechanical engineering. With the Profibus Interface a simple and cost saving connection to a modern guidance system is possible.
Due to the flexible representation of measuring values the application range includes: power stations, engines, food industry, large-scale installations, water treatment and chemical industry.


The 6-digit process indicator is communicated directly by the Profibus-DP. The values to be indicated will be transmitted via BCD-code. The indicated value ranges from -999999... 999999 with any decimal place. Additionally 2 red status LED's are installed on the front side, sign and comma position will be transmitted by a Byte. On the reverse you can find LED's for diagnostics of the Profibus-DP communication, auxiliary power and 9-pole Profibus connection.



\section*{BP-AZ 31UC BP-AZ 31UC-GR}


\footnotetext{
Schuhmann GmbH \& Co. KG
Römerstraße 2
D-74363 Güglingen
Tel. +4971355056
E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de
}

Settings:
Value mapping Profibus data - unit data:


If there is no communication to the Profibus-DP master, the indication is set to " 000000 ".
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline display & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & off & off & off & off & off & off \\
\hline BCD Code & \[
8
\] & \[
\overline{8}
\] & \[
\stackrel{\circ}{8}
\] & \[
\overline{8}
\] & \[
\frac{\circ}{\circ}
\] & \[
\frac{\overline{0}}{0}
\] & \[
\frac{\circ}{5}
\] & \[
\overline{\overleftarrow{\sigma}}
\] & \[
\bigcirc
\] & \[
\bar{\circ}
\] & \[
\div
\] & \[
\bar{\circ}
\] & \[
\stackrel{\circ}{\rightleftharpoons}
\] & \[
\stackrel{\sigma}{\mp}
\] & \[
\stackrel{\circ}{\gtrless}
\] & \(\bar{\square}\) \\
\hline
\end{tabular}

Display:
\begin{tabular}{lll}
\hline LED BF: & red, active & Profibus-DP bus error \\
LED RUN: & green, active & device ready for use \\
LED DIA: & red, active & Profibus-DP diagnose error
\end{tabular}

\section*{Environmental conditions:}

Storage temperature: \(\quad-40 \ldots+70^{\circ} \mathrm{C}\)
Operating temperature: \(\quad 0 . . .55^{\circ} \mathrm{C}\)
Isolation voltage:
4 kV eff. 1 sec. auxiliary voltage 500 V eff. 1 sec. Profibus

Auxiliary power:
24 V UC
20...30 V AC/ DC
\(<3\) W
Influence of auxiliary power: \(<0,1 \%\)
Characteristics of transmission:

Field bus:
Profibus DP
Min. slave interval:
Field bus connection:
Addressing:
9,6 kBit/s...12 MBit/s 2 msec .
9 pole Sub D socket
0... 99 by turn-switch backside
The current GSD file and an example
for a S7 is available on our website
www.schuhmann-messtechnik.de

\section*{Directive:}
\begin{tabular}{ll} 
EMC Directive: & 2014/30/EU* \\
Low Voltage Directive: & \(2014 / 35 / E U\)
\end{tabular}
*minimum deviations possible during HF-radiation influence
Mounting details:
Housing for top hat rail
Type of protection: IP 54 front
Front frame: \(\quad 96 \times 48 \mathrm{~mm}\)
Installation depth: \(\quad 138,5 \mathrm{~mm}\)
Width: \(\quad 45 \mathrm{~mm}\)
Weight: \(\quad 290 \mathrm{~g}\)
Material: \(\quad P C / A B S\)
Flammability class: V0 (UL94)
Approval: CE
Connection: plugg. screw clamps \(0,14 \ldots 1,5 \mathrm{~mm}^{2}\)

Please check switch position before initial operation!

\section*{Ordering information:}
\begin{tabular}{llll} 
Type: & BP-AZ 31 UC & \(24 V U C\) & red \\
& BP-AZ 31 UC-GR & \(24 V U C\) & green
\end{tabular}

\section*{History}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Price and availability on request} \\
\hline Title & & Replacement \\
\hline AF 2.01 GDC & Temperature-Frequency-Converter, 2-channel & AF 29.01 GDC \\
\hline BP-AZ 31 & Process Indicator with Profibus Interface & no longer available \\
\hline DAF 9.00 G/ GDC/ TW & Digital Analog Frequency Transducer & on request \\
\hline DAI 15.00 G/ GDC & Digital Analog-PWM-Transducer & on request \\
\hline DFA 8.00 GUC/ GW & Digital Frequency Analog Transducer & DFA 1 series \\
\hline DFA 8. 0 GW/ .10/ \(20 / .31 \mathrm{GW}\) & Digital Frequency Analog Transducer & DFA 1 series \\
\hline DFA 8.40/.41/.42 GW & Digital Frequency Analog Transducer & DFA 1 series \\
\hline DGW 1.00 G/ GDC & Digital Limit Switch, 1-channel & DGS 1.00 GW \\
\hline DGW \(2.00 \mathrm{G} / \mathrm{GDC}\) & Digital Limit Switch, 2-channel & DGS 2.00 GW \\
\hline DGW 2.01 G/ GDC & Digital Limit Switch for Pt100 Signal & DGS 2.01 GW \\
\hline DGW 2.08 G/ GDC & Digital Limit Switch for Temperature Signal & on request \\
\hline DGW 2.03/ GDC/ TW & Difference Limit Switch, 2-channel & on request \\
\hline DGW \(4.00 \mathrm{G} / \mathrm{GUC}\) & Digital Multi-Channel Limit Switch, 4 relais & on request \\
\hline DGW 6.00 G/ GUC & Digital Multi-Channel Limit Switch, 6 relais & on request \\
\hline DT 1.13 GW & Analog memory & AWS 1.00 SDC/ MW, AWS 1.10 SDC \\
\hline ER 16.00 GW/ ER 26.00 G/ GDC & Electrode relay & ER 2.00 MW \\
\hline GS 2.00 G/ GDC & Limit Switch & GS 2.00 GW \\
\hline GW 2.04 GW & Live-Zero-Control & on request \\
\hline MPU 4.00 G/ GDC & Universal Temperature Converter & MPU 1.00 GW \\
\hline MUX 25.00 G & Measuring point switch & MUX 25.00 MDC \\
\hline NG 15.00 G/ GDC & Power Supply Unit & NG15.00MW \\
\hline NG 18.00 G/ GDC & Power Supply Unit & no longer available \\
\hline SE 20.00 GW & Setpoint adjuster & SE 30.00 GW/ SE 30.24 GW \\
\hline
\end{tabular}

\section*{History}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Price and availability on request} \\
\hline Tilte & & Replacement \\
\hline TR. 00 UC/ W & Isolating Amplifier & TT 1.00 MW \\
\hline TR 2.00/ TR 4.00/ UC & Multi-Channel Isolating Amplifier & TT 2.00 GW/ TT 4.00 GW \\
\hline TRS. 00 UC/ W & Feeding isolating Amplifier & TTS 1.00 MW \\
\hline TRSV 2.00/UC & Analog Distributor Transmitter Feeding, 2-channel & TTSV 2.00 GW/ TTSV 4.00 GW \\
\hline TRV 2.00/ TRV 4.00/ UC & Analog Distributor & TTV 2.00 GW/ TTSV 4.00 GW \\
\hline TS 1.00 GW & Isolating Amplifier & no longer available \\
\hline TU 2.09 GW & Adder - Subtractor & AS 3.00 SDC/ MW/ AS 3.10 SDC/ MW \\
\hline TV 1.xx & Isolating Amplifier & STV 2.00 GW/ STP 1.00 SDC/ STP 1.00 MW \\
\hline TV 1.10 G & Transducer passive & no longer available \\
\hline TV 1.2x & Isolating Amplifier & STV 2.00 GW/ STP 1.00 SDC/ STP 1.00 MW \\
\hline TF 1.00 GW & Isolating Amplifier & TF 19.00 GW \\
\hline TF 13.00 GW & AC Current Transducer 1A/5A & TF 39.00 GW \\
\hline UT 1.00 G/ GDC & Isolating Amplifier & UT 19.00 GW \\
\hline UT 1.04 G/ GDC & Isolating Amplifier, special input & UT 19.04 GW \\
\hline UTS 1.00 GUC/ W & Universal Transmitter Feeding Device & UTS 19.00 GW \\
\hline UTS 1.14 GW & Universal Transmitter Feeding Device & TTS 1.14 MW \\
\hline UW 13.00 GUC & AC Current Transducer & UW 13.00 GW \\
\hline UW 13.01 GUC & AC Voltage Transducer & UW 13.01 GW \\
\hline WU 3.00 GW & Isolating Transducer for Potentiometers & WU 39.00 GW \\
\hline ZM 20.00 GW & Setpoint adjuster/ Timestamp current adjuster & datasheet on request \\
\hline
\end{tabular}

\section*{Schuhmann Messtechnik}

Schuhmann GmbH \& Co. KG
Römerstraße 2
74363 Güglingen
Germany

Tel. +49 71355056
E-mail: info@schuhmann-messtechnik.de
www.schuhmann-messtechnik.de```


[^0]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. + 4971355056
    Fax + 4971355355
    www.schuhmann-messtechnik.de

[^1]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^2]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^3]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^4]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^5]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^6]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^7]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^8]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^9]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^10]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^11]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^12]:    * Designs: $\quad G=$ housing,
    $\mathrm{T}=$ housing for door installation,
    $E=$ eurocard

[^13]:    * Designs: $\quad G=$ housing,
    $\mathrm{T}=$ housing for door installation,
    $E=$ eurocard

[^14]:    ${ }^{* 1}$ There is a constant change between the actual indicated value and the display of the menu item.
    ${ }^{* 2}$ The display is free scalable, e. g. instead of the $4 \ldots 20 \mathrm{~mA} 0 \ldots 100 \mathrm{~m}^{3}$ is being displayed.
    ${ }^{* 3}$ Live-Zero is monitoring the range: relay out of range of $3,9 . . .20,8$.

[^15]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^16]:    ${ }^{* 1}$ There is a constant change between the actual indicated value and the dispay of the menu item.
    *2 The display is free scalable, e.g. instead of the $4 \ldots 20 \mathrm{~mA} 0 \ldots 100 \mathrm{~m}^{3}$ is being displayed.
    ${ }^{* 3}$ Live-Zero is monitoring the range: relay out of range of $3,9 \ldots 20,8 \mathrm{~mA}$ fallen off.

[^17]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^18]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^19]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^20]:    Schuhmann GmbH \& Co. KG
    Römerstraße 2
    D-74363 Güglingen
    Tel. +4971355056
    E-mail: info@schuhmann-messtechnik.de www.schuhmann-messtechnik.de

[^21]:    * Designs: $\quad G=$ housing,
    $\mathrm{T}=$ housing for door installation,
    $E=$ eurocard

[^22]:    * Designs: $\quad G=$ housing,
    $\mathrm{T}=$ housing for door installation,
    $\mathrm{E}=$ eurocard

